These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26388216)

  • 41. Enhancing the Antifouling Ability of a Polyamide Nanofiltration Membrane by Narrowing the Pore Size Distribution via One-Step Multiple Interfacial Polymerization.
    Liu L; Chen X; Feng S; Wan Y; Luo J
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36132-36142. PubMed ID: 35881887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable-Porosity Membranes From Discrete Nanoparticles.
    Marchetti P; Mechelhoff M; Livingston AG
    Sci Rep; 2015 Dec; 5():17353. PubMed ID: 26626565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembly of a mixture system containing polypeptide graft and block copolymers: experimental studies and self-consistent field theory simulations.
    Zhuang Z; Zhu X; Cai C; Lin J; Wang L
    J Phys Chem B; 2012 Aug; 116(33):10125-34. PubMed ID: 22838739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers.
    Yin J; Yao X; Liou JY; Sun W; Sun YS; Wang Y
    ACS Nano; 2013 Nov; 7(11):9961-74. PubMed ID: 24131365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate-Silica Membranes.
    Cunha J; da Silva MP; Beira MJ; Corvo MC; Almeida PL; Sebastião PJ; Figueirinhas JL; de Pinho MN
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36363677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toroid formation through self-assembly of graft copolymer and homopolymer mixtures: experimental studies and dissipative particle dynamics simulations.
    Chen L; Jiang T; Lin J; Cai C
    Langmuir; 2013 Jul; 29(26):8417-26. PubMed ID: 23738828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Water and Solute Transport Governed by Tunable Pore Size Distributions in Nanoporous Graphene Membranes.
    Jang D; Idrobo JC; Laoui T; Karnik R
    ACS Nano; 2017 Oct; 11(10):10042-10052. PubMed ID: 28994572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast molecule separation through layered WS(2) nanosheet membranes.
    Sun L; Ying Y; Huang H; Song Z; Mao Y; Xu Z; Peng X
    ACS Nano; 2014 Jun; 8(6):6304-11. PubMed ID: 24853383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator.
    Nghiem LD; Vogel D; Khan S
    Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery.
    Wang L; Rehman D; Sun PF; Deshmukh A; Zhang L; Han Q; Yang Z; Wang Z; Park HD; Lienhard JH; Tang CY
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16906-16915. PubMed ID: 33798334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.
    Ou Y; Lv CJ; Yu W; Mao ZW; Wan LS; Xu ZK
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22400-7. PubMed ID: 25421306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with Uniform 1 Nanometer Pores.
    Zhang Y; Dong R; Gabinet UR; Poling-Skutvik R; Kim NK; Lee C; Imran OQ; Feng X; Osuji CO
    ACS Nano; 2021 May; 15(5):8192-8203. PubMed ID: 33729764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies.
    Frieß FV; Hu Q; Mayer J; Gemmer L; Presser V; Balzer BN; Gallei M
    Macromol Rapid Commun; 2022 Feb; 43(3):e2100632. PubMed ID: 34752668
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Charged micropollutant removal with hollow fiber nanofiltration membranes based on polycation/polyzwitterion/polyanion multilayers.
    de Grooth J; Reurink DM; Ploegmakers J; de Vos WM; Nijmeijer K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17009-17. PubMed ID: 25203928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Porous block copolymer separation membranes for 21st century sanitation and hygiene.
    Guo L; Wang Y; Steinhart M
    Chem Soc Rev; 2021 Jun; 50(11):6333-6348. PubMed ID: 33890584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-assembled phases of block copolymer blend thin films.
    Yager KG; Lai E; Black CT
    ACS Nano; 2014 Oct; 8(10):10582-8. PubMed ID: 25285733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Challenges and advances in the field of self-assembled membranes.
    van Rijn P; Tutus M; Kathrein C; Zhu L; Wessling M; Schwaneberg U; Böker A
    Chem Soc Rev; 2013 Aug; 42(16):6578-92. PubMed ID: 23744480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoporous block copolymer membranes for ultrafiltration: a simple approach to size tunability.
    Ahn H; Park S; Kim SW; Yoo PJ; Ryu du Y; Russell TP
    ACS Nano; 2014 Nov; 8(11):11745-52. PubMed ID: 25363788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.