These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26388404)

  • 1. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials.
    Cheng F; Yang X; Gao J
    Sci Rep; 2015 Sep; 5():14327. PubMed ID: 26388404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers.
    Ishikawa A; Tanaka T
    Sci Rep; 2015 Jul; 5():12570. PubMed ID: 26229011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
    Ishikawa A; Hara S; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2017 Jun; 7(1):3205. PubMed ID: 28600570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.
    Le THH; Tanaka T
    ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.
    Adato R; Yanik AA; Amsden JJ; Kaplan DL; Omenetto FG; Hong MK; Erramilli S; Altug H
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19227-32. PubMed ID: 19880744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers.
    Wu C; Khanikaev AB; Adato R; Arju N; Yanik AA; Altug H; Shvets G
    Nat Mater; 2011 Nov; 11(1):69-75. PubMed ID: 22081082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials.
    Cao W; Singh R; Al-Naib IA; He M; Taylor AJ; Zhang W
    Opt Lett; 2012 Aug; 37(16):3366-8. PubMed ID: 23381259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap.
    Hwang I; Kim M; Yu J; Lee J; Choi JH; Park SA; Chang WS; Lee J; Jung JY
    Small Methods; 2021 Aug; 5(8):e2100277. PubMed ID: 34927875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism.
    Xu C; Ren Z; Zhou H; Zhou J; Ho CP; Wang N; Lee C
    Light Sci Appl; 2023 Jun; 12(1):154. PubMed ID: 37357238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy.
    Jung Y; Hwang I; Yu J; Lee J; Choi JH; Jeong JH; Jung JY; Lee J
    Sci Rep; 2019 May; 9(1):7834. PubMed ID: 31127173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
    Guo X; Hu H; Liao B; Zhu X; Yang X; Dai Q
    Nanotechnology; 2018 May; 29(18):184004. PubMed ID: 29457777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive and Selective Gas Sensor Based on a Channel Plasmonic Structure with an Enormous Hot Spot Region.
    Su DS; Tsai DP; Yen TJ; Tanaka T
    ACS Sens; 2019 Nov; 4(11):2900-2907. PubMed ID: 31602973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Label-Free and Ultrasensitive Detection of miR-155.
    Hui X; Yang C; Li D; He X; Huang H; Zhou H; Chen M; Lee C; Mu X
    Adv Sci (Weinh); 2021 Aug; 8(16):e2100583. PubMed ID: 34155822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
    König M; Rahmani M; Zhang L; Lei DY; Roschuk TR; Giannini V; Qiu CW; Hong M; Schlücker S; Maier SA
    ACS Nano; 2014 Sep; 8(9):9188-98. PubMed ID: 25136980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive and selective terahertz sensor for the fingerprint detection of lactose.
    Han B; Han Z; Qin J; Wang Y; Zhao Z
    Talanta; 2019 Jan; 192():1-5. PubMed ID: 30348363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.