These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26388404)

  • 21. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
    Neubrech F; Pucci A; Cornelius TW; Karim S; García-Etxarri A; Aizpurua J
    Phys Rev Lett; 2008 Oct; 101(15):157403. PubMed ID: 18999639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.
    Xu J; Ren Z; Dong B; Liu X; Wang C; Tian Y; Lee C
    ACS Nano; 2020 Sep; 14(9):12159-12172. PubMed ID: 32812748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells.
    Ahmadivand A; Gerislioglu B; Tomitaka A; Manickam P; Kaushik A; Bhansali S; Nair M; Pala N
    Biomed Opt Express; 2018 Feb; 9(2):373-386. PubMed ID: 29552379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection.
    Chen Y; Liu H; Yin H; Zhu Q; Yao G; Gu N
    Front Chem; 2020; 8():307. PubMed ID: 32411663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Chiral Sensing at the Few-Molecule Level Using Negative Index Metamaterial Plasmonic Nanocuvettes.
    Indukuri SRKC; Frydendahl C; Sharma N; Mazurski N; Paltiel Y; Levy U
    ACS Nano; 2022 Oct; 16(10):17289-17297. PubMed ID: 36194513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design.
    Lochbaum A; Dorodnyy A; Koch U; Koepfli SM; Volk S; Fedoryshyn Y; Wood V; Leuthold J
    Nano Lett; 2020 Jun; 20(6):4169-4176. PubMed ID: 32343585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons.
    Hu H; Yang X; Zhai F; Hu D; Liu R; Liu K; Sun Z; Dai Q
    Nat Commun; 2016 Jul; 7():12334. PubMed ID: 27460765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy.
    Cao C; Zhang J; Li S; Xiong Q
    Small; 2014 Aug; 10(16):3252-6. PubMed ID: 24729476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial extent of plasmonic enhancement of vibrational signals in the infrared.
    Neubrech F; Beck S; Glaser T; Hentschel M; Giessen H; Pucci A
    ACS Nano; 2014 Jun; 8(6):6250-8. PubMed ID: 24811345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Metamaterial for Plasmon-Enhanced Raman Scattering at any Excitation Wavelengths from the Visible to Near-Infrared Range.
    Shi CF; Zheng B; Li J; Zhou Y; Liu HL; Ahmed SA; Wang K; Xia XH
    Anal Chem; 2021 Jan; 93(3):1409-1415. PubMed ID: 33347748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes.
    Limaj O; Etezadi D; Wittenberg NJ; Rodrigo D; Yoo D; Oh SH; Altug H
    Nano Lett; 2016 Feb; 16(2):1502-8. PubMed ID: 26761392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge.
    Huang ST; Hsu SF; Tang KY; Yen TJ; Yao DJ
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial.
    Zhang J; MacDonald KF; Zheludev NI
    Opt Express; 2013 Nov; 21(22):26721-8. PubMed ID: 24216893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
    Rodrigo D; Limaj O; Janner D; Etezadi D; García de Abajo FJ; Pruneri V; Altug H
    Science; 2015 Jul; 349(6244):165-8. PubMed ID: 26160941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic metamaterials for chiral sensing applications.
    Lee YY; Kim RM; Im SW; Balamurugan M; Nam KT
    Nanoscale; 2020 Jan; 12(1):58-66. PubMed ID: 31815994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.
    Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C
    Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano metamaterials for ultrasensitive Terahertz biosensing.
    Lee DK; Kang JH; Kwon J; Lee JS; Lee S; Woo DH; Kim JH; Song CS; Park QH; Seo M
    Sci Rep; 2017 Aug; 7(1):8146. PubMed ID: 28811551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectric supported ring-shaped metal disks on a metal film for ultrasensitive refractive index sensing.
    Gu Y; Li Q; Wang GP
    Opt Lett; 2011 Sep; 36(17):3326-8. PubMed ID: 21886199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.