These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26388475)

  • 1. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".
    Oshokoya OO; JiJi RD
    Anal Chim Acta; 2015 Sep; 892():59-68. PubMed ID: 26388475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of quantitative methods in protein secondary structure determination via deep-ultraviolet resonance Raman spectroscopy.
    Roach CA; Simpson JV; JiJi RD
    Analyst; 2012 Feb; 137(3):555-62. PubMed ID: 22146490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Ultraviolet Resonance Raman (DUVRR) Spectroscopy of Therapeutic Monoclonal Antibodies Subjected to Thermal Stress.
    Bueno J; Long D; Kauffman JF; Arzhantsev S
    Anal Chem; 2015 Aug; 87(15):7880-6. PubMed ID: 26132464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MCR-ALS analysis of two-way UV resonance Raman spectra to resolve discrete protein secondary structural motifs.
    Simpson JV; Balakrishnan G; Jiji RD
    Analyst; 2009 Jan; 134(1):138-47. PubMed ID: 19082186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structure assessment of formulated bevacizumab in the presence of SDS by deep ultraviolet resonance Raman (DUVRR) spectroscopy.
    Qiu C; Arzhantsev S
    Anal Biochem; 2018 Aug; 555():26-32. PubMed ID: 29885282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.
    Shashilov VA; Sikirzhytski V; Popova LA; Lednev IK
    Methods; 2010 Sep; 52(1):23-37. PubMed ID: 20580825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc₁complex reveals a potential marker for the transmembrane peptide backbone.
    Halsey CM; Oshokoya OO; Jiji RD; Cooley JW
    Biochemistry; 2011 Aug; 50(30):6531-8. PubMed ID: 21718040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure.
    Chi Z; Chen XG; Holtz JS; Asher SA
    Biochemistry; 1998 Mar; 37(9):2854-64. PubMed ID: 9485436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra.
    Kinalwa MN; Blanch EW; Doig AJ
    Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure determination in proteins from deep (192-223-nm) ultraviolet Raman spectroscopy.
    Copeland RA; Spiro TG
    Biochemistry; 1987 Apr; 26(8):2134-9. PubMed ID: 3620443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the lipid environment on valinomycin structure and cation complex formation.
    Halsey CM; Benham DA; JiJi RD; Cooley JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():200-6. PubMed ID: 22683555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediacy of poly(L-proline) II and beta-strand conformations in poly(L-lysine) beta-sheet formation probed by temperature-jump/UV resonance Raman spectroscopy.
    JiJi RD; Balakrishnan G; Hu Y; Spiro TG
    Biochemistry; 2006 Jan; 45(1):34-41. PubMed ID: 16388578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-ultraviolet (UV) resonance raman spectroscopy as a tool for quality control of formulated therapeutic proteins.
    Arzhantsev S; Vilker V; Kauffman J
    Appl Spectrosc; 2012 Nov; 66(11):1262-8. PubMed ID: 23146181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-processing of ultraviolet resonance Raman spectra.
    Simpson JV; Oshokoya O; Wagner N; Liu J; JiJi RD
    Analyst; 2011 Mar; 136(6):1239-47. PubMed ID: 21267503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of persistent α-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy.
    Brown MC; Mutter A; Koder RL; JiJi RD; Cooley JW
    J Raman Spectrosc; 2013 Jul; 44(7):957-962. PubMed ID: 27795611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations.
    Sharma B; Bykov SV; Asher SA
    J Phys Chem B; 2008 Sep; 112(37):11762-9. PubMed ID: 18712913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of fluidity on the ensemble structure of a membrane embedded α-helical peptide.
    Eagleburger MK; Cooley JW; JiJi RD
    Biopolymers; 2014 Aug; 101(8):895-902. PubMed ID: 25098179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of secondary structure effects on the IR and Raman spectra of polypeptides in terms of localized vibrations.
    Jacob CR; Luber S; Reiher M
    J Phys Chem B; 2009 May; 113(18):6558-73. PubMed ID: 19361178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihedral psi angle dependence of the amide III vibration: a uniquely sensitive UV resonance Raman secondary structural probe.
    Asher SA; Ianoul A; Mix G; Boyden MN; Karnoup A; Diem M; Schweitzer-Stenner R
    J Am Chem Soc; 2001 Nov; 123(47):11775-81. PubMed ID: 11716734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.