These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26388511)

  • 1. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum.
    Hall MB; Hatfield RD
    J Microbiol Methods; 2015 Nov; 118():147-51. PubMed ID: 26388511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of methods to detect changes in reserve carbohydrate for mixed rumen microbes.
    Hackmann TJ; Keyser BL; Firkins JL
    J Microbiol Methods; 2013 Jun; 93(3):284-91. PubMed ID: 23570905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short communication: Gelatinization and enzymatic hydrolysis characteristics relevant to digestion and analysis of glycogen granules isolated from ruminal protozoa.
    Hall MB
    J Dairy Sci; 2019 May; 102(5):4205-4208. PubMed ID: 30879814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotrichid protozoa influence conversion of glucose to glycogen and other microbial products.
    Hall MB
    J Dairy Sci; 2011 Sep; 94(9):4589-602. PubMed ID: 21854932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization.
    Hall MB
    J Dairy Sci; 2016 Mar; 99(3):1956-1958. PubMed ID: 26805977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rumen fermentation and starch degradation by Holstein steers fed sodium-hydroxide- or formaldehyde-treated wheat.
    Schmidt J; Tóth T; Fábián J
    Acta Vet Hung; 2006 Jun; 54(2):201-12. PubMed ID: 16841758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum.
    Fox JT; Drouillard JS; Shi X; Nagaraja TG
    J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro fermentation of different starches by mixed micro-organisms from the sheep rumen.
    Ataşoğlu C; Yurtman IY
    J Anim Physiol Anim Nutr (Berl); 2007 Oct; 91(9-10):419-25. PubMed ID: 17845249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.
    Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI
    J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of fermentation of a purified diet and microbial growth in the rumen.
    Maeng WJ; Baldwin RL
    J Dairy Sci; 1976 Apr; 59(4):636-42. PubMed ID: 1262577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes.
    Hall MB; Weimer PJ
    J Anim Sci; 2007 Jun; 85(6):1467-78. PubMed ID: 17296769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat.
    Owens D; McGee M; Boland T; O'Kiely P
    J Anim Sci; 2009 Feb; 87(2):658-68. PubMed ID: 18952732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen--a covalently linked component of the cell wall in Saccharomyces cerevisiae.
    Arvindekar AU; Patil NB
    Yeast; 2002 Jan; 19(2):131-9. PubMed ID: 11788968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of procedures for detaching particle-associated microbes from forage and concentrate incubated in Rusitec fermenters: efficiency of recovery and representativeness of microbial isolates.
    Martínez ME; Ranilla MJ; Ramos S; Tejido ML; Saro C; Carro MD
    J Anim Sci; 2009 Jun; 87(6):2064-72. PubMed ID: 19251933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acarbose on ruminal fermentation, blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high-carbohydrate ration.
    Blanch M; Calsamiglia S; Devant M; Bach A
    J Dairy Res; 2010 Feb; 77(1):123-8. PubMed ID: 20053317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes.
    Vavouraki AI; Volioti V; Kornaros ME
    Waste Manag; 2014 Jan; 34(1):167-73. PubMed ID: 24176238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.
    Gozho GN; Mutsvangwa T
    J Dairy Sci; 2008 Jul; 91(7):2726-35. PubMed ID: 18565931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.