BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26388657)

  • 1. Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability.
    Strobel BN; Butler MJ
    Wildl Soc Bull; 2014 Mar; 38(1):188-195. PubMed ID: 26388657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis).
    Bertram MR; Hamer GL; Hartup BK; Snowden KF; Medeiros MC; Hamer SA
    Parasitology; 2017 Apr; 144(5):629-640. PubMed ID: 27938437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of distance on detectability of Arctic waterfowl using double-observer sampling during helicopter surveys.
    Alisauskas RT; Conn PB
    Ecol Evol; 2019 Jan; 9(2):859-867. PubMed ID: 30766675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coccidian Parasites and Conservation Implications for the Endangered Whooping Crane (Grus americana).
    Bertram MR; Hamer GL; Snowden KF; Hartup BK; Hamer SA
    PLoS One; 2015; 10(6):e0127679. PubMed ID: 26061631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migrating Whooping Cranes avoid wind-energy infrastructure when selecting stopover habitat.
    Pearse AT; Metzger KL; Brandt DA; Shaffer JA; Bidwell MT; Harrell W
    Ecol Appl; 2021 Jul; 31(5):e02324. PubMed ID: 33682273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the enteric microflora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis).
    Hoar BM; Whiteside DP; Ward L; Douglas Inglis G; Morck DW
    Zoo Biol; 2007 Mar; 26(2):141-53. PubMed ID: 19360567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allozyme evidence for crane systematics and polymorphisms within populations of Sandhill, Sarus, Siberian, and whooping cranes.
    Dessauer HC; Gee GF; Rogers JS
    Mol Phylogenet Evol; 1992 Dec; 1(4):279-88. PubMed ID: 1342943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of opportunistic sightings and expert knowledge to predict and compare Whooping Crane stopover habitat.
    Hefley TJ; Baasch DM; Tyre AJ; Blankenship EE
    Conserv Biol; 2015 Oct; 29(5):1337-46. PubMed ID: 25926004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.
    Belaire JA; Kreakie BJ; Keitt T; Minor E
    Conserv Biol; 2014 Apr; 28(2):541-50. PubMed ID: 24372936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SURVEY OF GROSS AND HISTOPATHOLOGIC FINDINGS IN TWO WINTERING SUBPOPULATIONS OF SANDHILL CRANES ( ANTIGONE CANADENSIS).
    Hensel M; Bertram M; Rech R; Hamer GL; Hamer SA
    J Wildl Dis; 2018 Jan; 54(1):156-160. PubMed ID: 29053431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Mercury in Three Populations of Endangered Whooping Crane (Grus americana).
    Hartup BK; Smith P; Warner SE; McPhee ME
    Bull Environ Contam Toxicol; 2021 Nov; 107(5):809-813. PubMed ID: 34232328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses.
    Irigoyen AJ; Rojo I; Calò A; Trobbiani G; Sánchez-Carnero N; García-Charton JA
    PLoS One; 2018; 13(1):e0190990. PubMed ID: 29324887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are whooping cranes destined for extinction? Climate change imperils recruitment and population growth.
    Butler MJ; Metzger KL; Harris GM
    Ecol Evol; 2017 Apr; 7(8):2821-2834. PubMed ID: 28428872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coccidia of whooping cranes.
    Forrester DJ; Carpenter JW; Blankinship DR
    J Wildl Dis; 1978 Jan; 14(1):24-7. PubMed ID: 633514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating differences in density estimation for central Iowa butterflies using two methodologies.
    Patterson S; Harris J; Dinsmore S; Kinkead K
    PeerJ; 2023; 11():e16165. PubMed ID: 37842044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of shark detection rates by aerial observers.
    Robbins WD; Peddemors VM; Kennelly SJ; Ives MC
    PLoS One; 2014; 9(2):e83456. PubMed ID: 24498258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using species traits to predict detectability of animals on aerial surveys.
    Schlossberg S; Chase MJ; Griffin CR
    Ecol Appl; 2018 Jan; 28(1):106-118. PubMed ID: 28944528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana).
    Schlossberg S; Chase MJ; Griffin CR
    PLoS One; 2016; 11(10):e0164904. PubMed ID: 27755570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Serum Protein Electrophoresis Values in Wild and Captive Whooping Cranes ( Grus americana ).
    Hausmann JC; Cray C; Hartup BK
    J Avian Med Surg; 2015 Sep; 29(3):192-9. PubMed ID: 26378665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineating and identifying long-term changes in the whooping crane (Grus americana) migration corridor.
    Pearse AT; Rabbe M; Juliusson LM; Bidwell MT; Craig-Moore L; Brandt DA; Harrell W
    PLoS One; 2018; 13(2):e0192737. PubMed ID: 29447213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.