BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26388853)

  • 1. Regulation of electron transfer processes affects phototrophic mat structure and activity.
    Ha PT; Renslow RS; Atci E; Reardon PN; Lindemann SR; Fredrickson JK; Call DR; Beyenal H
    Front Microbiol; 2015; 6():909. PubMed ID: 26388853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.
    Babauta JT; Atci E; Ha PT; Lindemann SR; Ewing T; Call DR; Fredrickson JK; Beyenal H
    Front Microbiol; 2014; 5():11. PubMed ID: 24478768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling.
    Lindemann SR; Moran JJ; Stegen JC; Renslow RS; Hutchison JR; Cole JK; Dohnalkova AC; Tremblay J; Singh K; Malfatti SA; Chen F; Tringe SG; Beyenal H; Fredrickson JK
    Front Microbiol; 2013; 4():323. PubMed ID: 24312082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat.
    Mobberley JM; Lindemann SR; Bernstein HC; Moran JJ; Renslow RS; Babauta J; Hu D; Beyenal H; Nelson WC
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28334407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan).
    Martinez JN; Nishihara A; Lichtenberg M; Trampe E; Kawai S; Tank M; Kühl M; Hanada S; Thiel V
    Microbes Environ; 2019 Dec; 34(4):374-387. PubMed ID: 31685759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiversity of the microbial mat of the Garga hot spring.
    Rozanov AS; Bryanskaya AV; Ivanisenko TV; Malup TK; Peltek SE
    BMC Evol Biol; 2017 Dec; 17(Suppl 2):254. PubMed ID: 29297382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain).
    Jonkers HM; Ludwig R; Wit R; Pringault O; Muyzer G; Niemann H; Finke N; Beer D
    FEMS Microbiol Ecol; 2003 May; 44(2):175-89. PubMed ID: 19719635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.
    Bernstein HC; Beam JP; Kozubal MA; Carlson RP; Inskeep WP
    Environ Microbiol; 2013 Aug; 15(8):2360-70. PubMed ID: 23516993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological adaptation of a nitrate-storing Beggiatoa sp. to diel cycling in a phototrophic hypersaline mat.
    Hinck S; Neu TR; Lavik G; Mussmann M; de Beer D; Jonkers HM
    Appl Environ Microbiol; 2007 Nov; 73(21):7013-22. PubMed ID: 17766448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole.
    Kinsman-Costello LE; Sheik CS; Sheldon ND; Allen Burton G; Costello DM; Marcus D; Uyl PA; Dick GJ
    Geobiology; 2017 Mar; 15(2):225-239. PubMed ID: 27671809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland).
    Roeselers G; Norris TB; Castenholz RW; Rysgaard S; Glud RN; Kühl M; Muyzer G
    Environ Microbiol; 2007 Jan; 9(1):26-38. PubMed ID: 17227409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy.
    Klatt JM; Meyer S; Häusler S; Macalady JL; de Beer D; Polerecky L
    ISME J; 2016 Apr; 10(4):921-33. PubMed ID: 26405833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-d) by a hypersaline microbial mat and related functional changes in the mat community.
    Grötzschel S; Köster J; de Beer D
    Microb Ecol; 2004 Aug; 48(2):254-62. PubMed ID: 15546044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular ecology of microbial mats.
    Bolhuis H; Cretoiu MS; Stal LJ
    FEMS Microbiol Ecol; 2014 Nov; 90(2):335-50. PubMed ID: 25109247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments.
    Chan CS; McAllister SM; Leavitt AH; Glazer BT; Krepski ST; Emerson D
    Front Microbiol; 2016; 7():796. PubMed ID: 27313567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily rhythmicity in coastal microbial mats.
    Hörnlein C; Confurius-Guns V; Stal LJ; Bolhuis H
    NPJ Biofilms Microbiomes; 2018; 4():11. PubMed ID: 29796291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification.
    Baumgartner LK; Dupraz C; Buckley DH; Spear JR; Pace NR; Visscher PT
    Astrobiology; 2009 Nov; 9(9):861-74. PubMed ID: 19968463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold.
    Lezcano MÁ; Moreno-Paz M; Carrizo D; Prieto-Ballesteros O; Fernández-Martínez MÁ; Sánchez-García L; Blanco Y; Puente-Sánchez F; de Diego-Castilla G; García-Villadangos M; Fairén AG; Parro V
    Astrobiology; 2019 Dec; 19(12):1490-1504. PubMed ID: 31339746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.
    Fernandez AB; Rasuk MC; Visscher PT; Contreras M; Novoa F; Poire DG; Patterson MM; Ventosa A; Farias ME
    Front Microbiol; 2016; 7():1284. PubMed ID: 27597845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin).
    Jessen GL; Lichtschlag A; Struck U; Boetius A
    Front Microbiol; 2016; 7():1011. PubMed ID: 27446049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.