BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

953 related articles for article (PubMed ID: 26389610)

  • 1. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F; Wulff J; Kapsch RP; Zink K
    Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].
    Renner F
    Z Med Phys; 2016 Sep; 26(3):209-23. PubMed ID: 26422577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of systematic uncertainties in Monte Carlo-calculated beam quality correction factors.
    Wulff J; Heverhagen JT; Zink K; Kawrakow I
    Phys Med Biol; 2010 Aug; 55(16):4481-93. PubMed ID: 20668340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes.
    Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J
    Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed high-accuracy megavoltage transmission measurements: a sensitive experimental benchmark of EGSnrc.
    Ali ES; McEwen MR; Rogers DW
    Med Phys; 2012 Oct; 39(10):5990-6003. PubMed ID: 23039637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations.
    Valdes-Cortez C; Mansour I; Rivard MJ; Ballester F; Mainegra-Hing E; Thomson RM; Vijande J
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33662945
    [No Abstract]   [Full Text] [Related]  

  • 7. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo calculations of kQ, the beam quality conversion factor.
    Muir BR; Rogers DW
    Med Phys; 2010 Nov; 37(11):5939-50. PubMed ID: 21158307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom.
    Van B; Dewaraja YK; Niedbala JT; Rosebush G; Kazmierski M; Hubers D; Mikell JK; Wilderman SJ
    Med Phys; 2023 Jan; 50(1):540-556. PubMed ID: 35983857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry characteristics of degraded electron beams investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy.
    Björk P; Nilsson P; Knöös T
    Phys Med Biol; 2002 Jan; 47(2):239-56. PubMed ID: 11837615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo-based dosimetric characterization of Esteya
    Valdes-Cortez C; Niatsetski Y; Perez-Calatayud J; Ballester F; Vijande J
    Med Phys; 2019 Jan; 46(1):356-369. PubMed ID: 30390317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo and water calorimetric determination of kilovoltage beam radiotherapy ionization chamber correction factors.
    Bancheri J; Ketelhut S; Büermann L; Seuntjens J
    Phys Med Biol; 2020 May; 65(10):105001. PubMed ID: 32208370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo calculation of specific absorbed fractions: variance reduction techniques.
    Díaz-Londoño G; García-Pareja S; Salvat F; Lallena AM
    Phys Med Biol; 2015 Apr; 60(7):2625-44. PubMed ID: 25767935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of uncertainties associated with Monte Carlo-based personalized dosimetry in clinical CT examinations.
    Akhavanallaf A; Xie T; Zaidi H
    Phys Med Biol; 2020 Feb; 65(4):045008. PubMed ID: 31935713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.