BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 26389709)

  • 1. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals.
    Ma J; Liu R; Wang X; Liu Q; Chen Y; Valle RP; Zuo YY; Xia T; Liu S
    ACS Nano; 2015 Oct; 9(10):10498-515. PubMed ID: 26389709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Molecular Influence of Graphene and Graphene Oxide on the Immune System Under In Vitro and In Vivo Conditions.
    Dudek I; Skoda M; Jarosz A; Szukiewicz D
    Arch Immunol Ther Exp (Warsz); 2016 Jun; 64(3):195-215. PubMed ID: 26502273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity.
    Ali-Boucetta H; Bitounis D; Raveendran-Nair R; Servant A; Van den Bossche J; Kostarelos K
    Adv Healthc Mater; 2013 Mar; 2(3):433-41. PubMed ID: 23184580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages.
    Diez-Orejas R; Feito MJ; Cicuéndez M; Casarrubios L; Rojo JM; Portolés MT
    Colloids Surf B Biointerfaces; 2018 Nov; 171():250-259. PubMed ID: 30036792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro immunotoxicological assessment of a potent microbicidal nanocomposite based on graphene oxide and silver nanoparticles.
    de Luna LAV; Zorgi NE; de Moraes ACM; da Silva DS; Consonni SR; Giorgio S; Alves OL
    Nanotoxicology; 2019 Mar; 13(2):189-203. PubMed ID: 30451576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the lateral dimension of graphene oxide in the regulation of cellular responses.
    Yue H; Wei W; Yue Z; Wang B; Luo N; Gao Y; Ma D; Ma G; Su Z
    Biomaterials; 2012 Jun; 33(16):4013-21. PubMed ID: 22381473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells.
    Russier J; Treossi E; Scarsi A; Perrozzi F; Dumortier H; Ottaviano L; Meneghetti M; Palermo V; Bianco A
    Nanoscale; 2013 Nov; 5(22):11234-47. PubMed ID: 24084792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative in vitro study of single and four layer graphene oxide nanoflakes - Cytotoxicity and cellular uptake.
    Peruzynska M; Cendrowski K; Barylak M; Tkacz M; Piotrowska K; Kurzawski M; Mijowska E; Drozdzik M
    Toxicol In Vitro; 2017 Jun; 41():205-213. PubMed ID: 28323107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages.
    Wu Y; Wang F; Wang S; Ma J; Xu M; Gao M; Liu R; Chen W; Liu S
    Nanoscale; 2018 Aug; 10(30):14637-14650. PubMed ID: 30028471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways.
    Zhou H; Zhao K; Li W; Yang N; Liu Y; Chen C; Wei T
    Biomaterials; 2012 Oct; 33(29):6933-42. PubMed ID: 22796167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproductive toxicity of nanoscale graphene oxide in male mice.
    Liang S; Xu S; Zhang D; He J; Chu M
    Nanotoxicology; 2015 Feb; 9(1):92-105. PubMed ID: 24621344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term inhalation study of graphene oxide nanoplates.
    Kim YH; Jo MS; Kim JK; Shin JH; Baek JE; Park HS; An HJ; Lee JS; Kim BW; Kim HP; Ahn KH; Jeon K; Oh SM; Lee JH; Workman T; Faustman EM; Yu IJ
    Nanotoxicology; 2018 Apr; 12(3):224-238. PubMed ID: 29385887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair.
    Han J; Kim YS; Lim MY; Kim HY; Kong S; Kang M; Choo YW; Jun JH; Ryu S; Jeong HY; Park J; Jeong GJ; Lee JC; Eom GH; Ahn Y; Kim BS
    ACS Nano; 2018 Feb; 12(2):1959-1977. PubMed ID: 29397689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials.
    Wang X; Duch MC; Mansukhani N; Ji Z; Liao YP; Wang M; Zhang H; Sun B; Chang CH; Li R; Lin S; Meng H; Xia T; Hersam MC; Nel AE
    ACS Nano; 2015 Mar; 9(3):3032-43. PubMed ID: 25646681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo.
    Chen GY; Chen CL; Tuan HY; Yuan PX; Li KC; Yang HJ; Hu YC
    Adv Healthc Mater; 2014 Sep; 3(9):1486-95. PubMed ID: 24652749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity.
    Rodrigues AF; Newman L; Jasim DA; Vacchi IA; Ménard-Moyon C; Crica LE; Bianco A; Kostarelos K; Bussy C
    Arch Toxicol; 2018 Nov; 92(11):3359-3379. PubMed ID: 30259072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization.
    Cicuéndez M; Fernandes M; Ayán-Varela M; Oliveira H; Feito MJ; Diez-Orejas R; Paredes JI; Villar-Rodil S; Vila M; Portolés MT; Duarte IF
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110709. PubMed ID: 31841776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways.
    Kang Y; Liu J; Wu J; Yin Q; Liang H; Chen A; Shao L
    Int J Nanomedicine; 2017; 12():5501-5510. PubMed ID: 28814866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.