These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26389738)

  • 1. Structure and multistate function of the transmembrane electron transporter CcdA.
    Williamson JA; Cho SH; Ye J; Collet JF; Beckwith JR; Chou JJ
    Nat Struct Mol Biol; 2015 Oct; 22(10):809-14. PubMed ID: 26389738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure and elevator mechanism of the membrane electron transporter CcdA.
    Zhou Y; Bushweller JH
    Nat Struct Mol Biol; 2018 Feb; 25(2):163-169. PubMed ID: 29379172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases.
    Fomenko DE; Marino SM; Gladyshev VN
    Mol Cells; 2008 Sep; 26(3):228-35. PubMed ID: 18648218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD.
    Katzen F; Beckwith J
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10471-6. PubMed ID: 12925743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic aspects of DsbD-mediated electron transport.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2008 Jul; 380(5):783-8. PubMed ID: 18571669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts.
    Page ML; Hamel PP; Gabilly ST; Zegzouti H; Perea JV; Alonso JM; Ecker JR; Theg SM; Christensen SK; Merchant S
    J Biol Chem; 2004 Jul; 279(31):32474-82. PubMed ID: 15159384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional insights into sulfide:quinone oxidoreductase.
    Brito JA; Sousa FL; Stelter M; Bandeiras TM; Vonrhein C; Teixeira M; Pereira MM; Archer M
    Biochemistry; 2009 Jun; 48(24):5613-22. PubMed ID: 19438211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling by transmembrane proteins shifts gears.
    Inouye M
    Cell; 2006 Sep; 126(5):829-31. PubMed ID: 16959559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility.
    Cho SH; Porat A; Ye J; Beckwith J
    EMBO J; 2007 Aug; 26(15):3509-20. PubMed ID: 17641688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis.
    Chen ZW; Jiang CY; She Q; Liu SJ; Zhou PJ
    Appl Environ Microbiol; 2005 Feb; 71(2):621-8. PubMed ID: 15691910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacillus subtilis YkuV is a thiol:disulfide oxidoreductase revealed by its redox structures and activity.
    Zhang X; Hu Y; Guo X; Lescop E; Li Y; Xia B; Jin C
    J Biol Chem; 2006 Mar; 281(12):8296-304. PubMed ID: 16418167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
    Pajor AM
    J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea.
    Kelly DJ; Thomas GH
    FEMS Microbiol Rev; 2001 Aug; 25(4):405-24. PubMed ID: 11524131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity.
    Yang Y; Jao Sc; Nanduri S; Starke DW; Mieyal JJ; Qin J
    Biochemistry; 1998 Dec; 37(49):17145-56. PubMed ID: 9860827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD.
    Rozhkova A; Stirnimann CU; Frei P; Grauschopf U; Brunisholz R; Grütter MG; Capitani G; Glockshuber R
    EMBO J; 2004 Apr; 23(8):1709-19. PubMed ID: 15057279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.
    Tossounian MA; Pedre B; Wahni K; Erdogan H; Vertommen D; Van Molle I; Messens J
    J Biol Chem; 2015 May; 290(18):11365-75. PubMed ID: 25752606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Break on through to the other side--the Sec translocon.
    Eichler J; Duong F
    Trends Biochem Sci; 2004 May; 29(5):221-3. PubMed ID: 15130556
    [No Abstract]   [Full Text] [Related]  

  • 20. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA.
    Kadokura H; Beckwith J
    EMBO J; 2002 May; 21(10):2354-63. PubMed ID: 12006488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.