BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 26389879)

  • 21. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells.
    Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y
    J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug targeting strategies for photodynamic therapy.
    Schmitt F; Juillerat-Jeanneret L
    Anticancer Agents Med Chem; 2012 Jun; 12(5):500-25. PubMed ID: 22292760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy.
    Liu L; Fu L; Jing T; Ruan Z; Yan L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocarriers in photodynamic therapy-in vitro and in vivo studies.
    Sztandera K; Gorzkiewicz M; Klajnert-Maculewicz B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 May; 12(3):e1509. PubMed ID: 31692285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.
    Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C
    Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.
    Calixto GM; Bernegossi J; de Freitas LM; Fontana CR; Chorilli M
    Molecules; 2016 Mar; 21(3):342. PubMed ID: 26978341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring Thioxanthone Derivatives as Singlet Oxygen Photosensitizers for Photodynamic Therapy at the Near-IR Region.
    Sivasakthi P; Samanta PK
    J Phys Chem A; 2023 Oct; 127(42):8900-8910. PubMed ID: 37819527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer.
    Winifred Nompumelelo Simelane N; Abrahamse H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy.
    Lin S; Liu C; Han X; Zhong H; Cheng C
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photodynamic therapy - mechanisms, photosensitizers and combinations.
    Kwiatkowski S; Knap B; Przystupski D; Saczko J; Kędzierska E; Knap-Czop K; Kotlińska J; Michel O; Kotowski K; Kulbacka J
    Biomed Pharmacother; 2018 Oct; 106():1098-1107. PubMed ID: 30119176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug.
    Yan F; Zhang Y; Kim KS; Yuan HK; Vo-Dinh T
    Photochem Photobiol; 2010; 86(3):662-6. PubMed ID: 20132513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tat/HA2 Peptides Conjugated AuNR@pNIPAAm as a Photosensitizer Carrier for Near Infrared Triggered Photodynamic Therapy.
    Ye S; Kang N; Chen M; Wang C; Wang T; Wang Y; Liu Y; Li D; Ren L
    Mol Pharm; 2015 Jul; 12(7):2444-58. PubMed ID: 26031331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructural hybrid sensitizers for photodynamic therapy.
    Kepczynski M; Dzieciuch M; Nowakowska M
    Curr Pharm Des; 2012; 18(18):2607-21. PubMed ID: 22512446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.
    Kamkaew A; Chen F; Zhan Y; Majewski RL; Cai W
    ACS Nano; 2016 Apr; 10(4):3918-35. PubMed ID: 27043181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.
    Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J
    Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Developments of Nanoparticles in the Treatment of Photodynamic Therapy for Cervical Cancer.
    Guo W; Sun C; Jiang G; Xin Y
    Anticancer Agents Med Chem; 2019; 19(15):1809-1819. PubMed ID: 30973114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy.
    Cao B; Xu H; Yang M; Mao C
    Methods Mol Biol; 2018; 1776():643-652. PubMed ID: 29869271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy.
    Jia X; Jia L
    Curr Drug Metab; 2012 Oct; 13(8):1119-22. PubMed ID: 22380016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nano-carrier-mediated nuclear targeting.
    Ling D; Bae BC; Park W; Na K
    Biomaterials; 2012 Jul; 33(21):5478-86. PubMed ID: 22560197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.