These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 26389930)
1. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms. Torbick N; Corbiere M Int J Environ Res Public Health; 2015 Sep; 12(9):11560-78. PubMed ID: 26389930 [TBL] [Abstract][Full Text] [Related]
2. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
3. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related]
5. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing. Gorham T; Jia Y; Shum CK; Lee J Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
7. Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States. Handler AM; Compton JE; Hill RA; Leibowitz SG; Schaeffer BA Sci Total Environ; 2023 Apr; 869():161784. PubMed ID: 36702268 [TBL] [Abstract][Full Text] [Related]
8. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain. Trescott A; Park MH Water Sci Technol; 2013; 67(5):1113-20. PubMed ID: 23416605 [TBL] [Abstract][Full Text] [Related]
9. Assessing Cyanobacterial Harmful Algal Blooms as Risk Factors for Amyotrophic Lateral Sclerosis. Torbick N; Ziniti B; Stommel E; Linder E; Andrew A; Caller T; Haney J; Bradley W; Henegan PL; Shi X Neurotox Res; 2018 Jan; 33(1):199-212. PubMed ID: 28470570 [TBL] [Abstract][Full Text] [Related]
10. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs. Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321 [TBL] [Abstract][Full Text] [Related]
11. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Gómez JA; Alonso CA; García AA Environ Monit Assess; 2011 Oct; 181(1-4):317-34. PubMed ID: 21243424 [TBL] [Abstract][Full Text] [Related]
12. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K; Klinger P; Heege T; Oppelt N Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864 [TBL] [Abstract][Full Text] [Related]
13. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Duan H; Tao M; Loiselle SA; Zhao W; Cao Z; Ma R; Tang X Water Res; 2017 Oct; 122():455-470. PubMed ID: 28624729 [TBL] [Abstract][Full Text] [Related]
14. Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China. Su X; Steinman AD; Tang X; Xue Q; Zhao Y; Xie L Harmful Algae; 2017 Sep; 68():168-177. PubMed ID: 28962977 [TBL] [Abstract][Full Text] [Related]
16. Sensor-based detection of algal blooms for public health advisories and long-term monitoring. Rome M; Beighley RE; Faber T Sci Total Environ; 2021 May; 767():144984. PubMed ID: 33636761 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446 [TBL] [Abstract][Full Text] [Related]
18. Effective aerial monitoring of cyanobacterial harmful algal blooms is dependent on understanding cellular migration. Qu M; Anderson S; Lyu P; Malang Y; Lai J; Liu J; Jiang B; Xie F; Liu HHT; Lefebvre DD; Wang YS Harmful Algae; 2019 Jul; 87():101620. PubMed ID: 31349882 [TBL] [Abstract][Full Text] [Related]
19. Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model. Wynne TT; Stumpf RP; Tomlinson MC; Schwab DJ; Watabayashi GY; Christensen JD Ecol Appl; 2011 Oct; 21(7):2709-21. PubMed ID: 22073654 [TBL] [Abstract][Full Text] [Related]
20. Improving the spatial and temporal monitoring of cyanotoxins in Iowa lakes using a multiscale and multi-modal monitoring approach. Douglas Greene SB; LeFevre GH; Markfort CD Sci Total Environ; 2021 Mar; 760():143327. PubMed ID: 33239199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]