These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
541 related articles for article (PubMed ID: 26390118)
1. Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy in Vitro and in Vivo. Zhang J; Liang YC; Lin X; Zhu X; Yan L; Li S; Yang X; Zhu G; Rogach AL; Yu PK; Shi P; Tu LC; Chang CC; Zhang X; Chen X; Zhang W; Lee CS ACS Nano; 2015 Oct; 9(10):9741-56. PubMed ID: 26390118 [TBL] [Abstract][Full Text] [Related]
2. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH. Zhang Z; Wang R; Huang X; Luo R; Xue J; Gao J; Liu W; Liu F; Feng F; Qu W ACS Appl Mater Interfaces; 2020 Feb; 12(5):5680-5694. PubMed ID: 31944660 [TBL] [Abstract][Full Text] [Related]
3. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Jiang H; Geng D; Liu H; Li Z; Cao J Drug Deliv; 2016 Nov; 23(9):3665-3673. PubMed ID: 27749102 [TBL] [Abstract][Full Text] [Related]
4. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release. Zhao J; Liu J; Xu S; Zhou J; Han S; Deng L; Zhang J; Liu J; Meng A; Dong A ACS Appl Mater Interfaces; 2013 Dec; 5(24):13216-26. PubMed ID: 24313273 [TBL] [Abstract][Full Text] [Related]
5. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold‑iron oxide nanocomposites: A pH-sensitive targeted drug delivery system for brain cancer theranostics. Ghorbani M; Bigdeli B; Jalili-Baleh L; Baharifar H; Akrami M; Dehghani S; Goliaei B; Amani A; Lotfabadi A; Rashedi H; Haririan I; Alam NR; Hamedani MP; Khoobi M Eur J Pharm Sci; 2018 Mar; 114():175-188. PubMed ID: 29248558 [TBL] [Abstract][Full Text] [Related]
6. Huang C; Chen F; Zhang L; Yang Y; Yang X; Pan W Int J Nanomedicine; 2020; 15():2987-2998. PubMed ID: 32431497 [TBL] [Abstract][Full Text] [Related]
7. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Li C; Ge X; Wang L Biomed Pharmacother; 2017 Feb; 86():628-636. PubMed ID: 28027539 [TBL] [Abstract][Full Text] [Related]
8. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Zhang J; Li S; An FF; Liu J; Jin S; Zhang JC; Wang PC; Zhang X; Lee CS; Liang XJ Nanoscale; 2015 Aug; 7(32):13503-10. PubMed ID: 26199064 [TBL] [Abstract][Full Text] [Related]
9. Poly(D,L-lactic acid)-glycerol-based nanoparticles for curcumin delivery. Yoon IS; Park JH; Kang HJ; Choe JH; Goh MS; Kim DD; Cho HJ Int J Pharm; 2015 Jul; 488(1-2):70-7. PubMed ID: 25900098 [TBL] [Abstract][Full Text] [Related]
10. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Mao KL; Fan ZL; Yuan JD; Chen PP; Yang JJ; Xu J; ZhuGe DL; Jin BH; Zhu QY; Shen BX; Sohawon Y; Zhao YZ; Xu HL Colloids Surf B Biointerfaces; 2017 Dec; 160():704-714. PubMed ID: 29035818 [TBL] [Abstract][Full Text] [Related]
11. Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Lin M; Teng L; Wang Y; Zhang J; Sun X Drug Deliv; 2016 May; 23(4):1420-5. PubMed ID: 26203688 [TBL] [Abstract][Full Text] [Related]
12. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Anitha A; Sreeranganathan M; Chennazhi KP; Lakshmanan VK; Jayakumar R Eur J Pharm Biopharm; 2014 Sep; 88(1):238-51. PubMed ID: 24815764 [TBL] [Abstract][Full Text] [Related]
13. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Zhang Y; Yang C; Wang W; Liu J; Liu Q; Huang F; Chu L; Gao H; Li C; Kong D; Liu Q; Liu J Sci Rep; 2016 Feb; 6():21225. PubMed ID: 26876480 [TBL] [Abstract][Full Text] [Related]
14. Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. Zhang H; Zhang Y; Chen Y; Zhang Y; Wang Y; Zhang Y; Song L; Jiang B; Su G; Li Y; Hou Z Int J Pharm; 2018 Oct; 549(1-2):230-238. PubMed ID: 30071310 [TBL] [Abstract][Full Text] [Related]
15. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Zhao X; Chen Q; Li Y; Tang H; Liu W; Yang X Eur J Pharm Biopharm; 2015 Jun; 93():27-36. PubMed ID: 25770771 [TBL] [Abstract][Full Text] [Related]
16. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Yan J; Wang Y; Jia Y; Liu S; Tian C; Pan W; Liu X; Wang H Biomed Pharmacother; 2017 Apr; 88():374-383. PubMed ID: 28122302 [TBL] [Abstract][Full Text] [Related]
17. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Zhang X; Li X; Hua H; Wang A; Liu W; Li Y; Fu F; Shi Y; Sun K Int J Nanomedicine; 2017; 12():5717-5732. PubMed ID: 28848349 [TBL] [Abstract][Full Text] [Related]
18. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. Guo F; Wu J; Wu W; Huang D; Yan Q; Yang Q; Gao Y; Yang G J Nanobiotechnology; 2018 Jul; 16(1):57. PubMed ID: 30012166 [TBL] [Abstract][Full Text] [Related]
19. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Yan J; Wang Y; Zhang X; Liu S; Tian C; Wang H Drug Deliv; 2016 Jun; 23(5):1757-62. PubMed ID: 26203689 [TBL] [Abstract][Full Text] [Related]
20. pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Gao C; Tang F; Gong G; Zhang J; Hoi MPM; Lee SMY; Wang R Nanoscale; 2017 Aug; 9(34):12533-12542. PubMed ID: 28819666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]