BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 26390125)

  • 1. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions.
    Bassani I; Kougias PG; Treu L; Angelidaki I
    Environ Sci Technol; 2015 Oct; 49(20):12585-93. PubMed ID: 26390125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex-situ biogas upgrading and enhancement in different reactor systems.
    Kougias PG; Treu L; Benavente DP; Boe K; Campanaro S; Angelidaki I
    Bioresour Technol; 2017 Feb; 225():429-437. PubMed ID: 27931939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition.
    Zhu X; Chen L; Chen Y; Cao Q; Liu X; Li D
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1569-1581. PubMed ID: 31302801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion.
    Palù M; Peprah M; Tsapekos P; Kougias P; Campanaro S; Angelidaki I; Treu L
    Bioresour Technol; 2022 Mar; 348():126754. PubMed ID: 35077815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.
    Luo G; Angelidaki I
    Biotechnol Bioeng; 2012 Nov; 109(11):2729-36. PubMed ID: 22615033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures.
    Omar B; Abou-Shanab R; El-Gammal M; Fotidis IA; Kougias PG; Zhang Y; Angelidaki I
    Water Res; 2018 Oct; 142():86-95. PubMed ID: 29860195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading.
    Bassani I; Kougias PG; Treu L; Porté H; Campanaro S; Angelidaki I
    Bioresour Technol; 2017 Jun; 234():310-319. PubMed ID: 28340435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.
    Bassani I; Kougias PG; Angelidaki I
    Bioresour Technol; 2016 Dec; 221():485-491. PubMed ID: 27677151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.
    Xu H; Gong S; Sun Y; Ma H; Zheng M; Wang K
    Environ Technol; 2015; 36(1-4):529-37. PubMed ID: 25347307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-year microbial adaptation during hydrogen-mediated biogas upgrading process in a serial reactor configuration.
    Treu L; Kougias PG; de Diego-Díaz B; Campanaro S; Bassani I; Fernández-Rodríguez J; Angelidaki I
    Bioresour Technol; 2018 Sep; 264():140-147. PubMed ID: 29800774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of H
    Wahid R; Mulat DG; Gaby JC; Horn SJ
    Biotechnol Biofuels; 2019; 12():104. PubMed ID: 31164923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ biogas upgrading with H
    Hafuka A; Fujino S; Kimura K; Oshita K; Konakahara N; Takahashi S
    Sci Total Environ; 2022 Jul; 828():154573. PubMed ID: 35302028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.
    Lv Z; Leite AF; Harms H; Richnow HH; Liebetrau J; Nikolausz M
    Anaerobe; 2014 Oct; 29():91-9. PubMed ID: 24291758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways.
    Bu F; Dong N; Kumar Khanal S; Xie L; Zhou Q
    Bioresour Technol; 2018 Oct; 266():364-373. PubMed ID: 29982059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants.
    Nettmann E; Bergmann I; Pramschüfer S; Mundt K; Plogsties V; Herrmann C; Klocke M
    Appl Environ Microbiol; 2010 Apr; 76(8):2540-8. PubMed ID: 20154117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.
    Wang W; Xie L; Luo G; Zhou Q; Angelidaki I
    Bioresour Technol; 2013 Oct; 146():234-239. PubMed ID: 23941705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition.
    Lv Z; Leite AF; Harms H; Glaser K; Liebetrau J; Kleinsteuber S; Nikolausz M
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):519-533. PubMed ID: 30334088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and microbial community of hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions.
    Dong N; Bu F; Zhou Q; Khanal SK; Xie L
    Bioresour Technol; 2018 Oct; 266():454-462. PubMed ID: 30005412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.