BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26390300)

  • 1. Non-redox metal ions can promote Wacker-type oxidations even better than copper(II): a new opportunity in catalyst design.
    Qin S; Dong L; Chen Z; Zhang S; Yin G
    Dalton Trans; 2015 Oct; 44(40):17508-15. PubMed ID: 26390300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-redox metal ion promoted oxidative coupling of indoles with olefins by the palladium(ii) acetate catalyst through dioxygen activation: experimental results with DFT calculations.
    Zhang S; Chen Z; Qin S; Lou C; Senan AM; Liao RZ; Yin G
    Org Biomol Chem; 2016 Apr; 14(17):4146-57. PubMed ID: 27075840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases.
    Zhang J; Wang Y; Luo N; Chen Z; Wu K; Yin G
    Dalton Trans; 2015 Jun; 44(21):9847-59. PubMed ID: 25939391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.
    Senan AM; Zhang S; Zeng M; Chen Z; Yin G
    J Agric Food Chem; 2017 Aug; 65(32):6912-6918. PubMed ID: 28719749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H
    Zhang J; Wei WJ; Lu X; Yang H; Chen Z; Liao RZ; Yin G
    Inorg Chem; 2017 Dec; 56(24):15138-15149. PubMed ID: 29182327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activator-free olefin oligomerization and isomerization reactions catalyzed by an air- and water-tolerant Wacker oxidation intermediate.
    Winston MS; Oblad PF; Labinger JA; Bercaw JE
    Angew Chem Int Ed Engl; 2012 Sep; 51(39):9822-4. PubMed ID: 22945030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of late transition metal complexes with molecular oxygen.
    Boisvert L; Goldberg KI
    Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)
    Wang D; Stahl SS
    J Am Chem Soc; 2017 Apr; 139(16):5704-5707. PubMed ID: 28399364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant.
    Cornell CN; Sigman MS
    Inorg Chem; 2007 Mar; 46(6):1903-9. PubMed ID: 17348721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation.
    Popp BV; Stahl SS
    Chemistry; 2009; 15(12):2915-22. PubMed ID: 19191243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V).
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the mechanism of heterogeneous Wacker oxidation over Pd-Cu/zeolite Y by transient XAS.
    Imbao J; van Bokhoven JA; Clark A; Nachtegaal M
    Nat Commun; 2020 Feb; 11(1):1118. PubMed ID: 32111846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lewis-acid-promoted stoichiometric and catalytic oxidations by manganese complexes having cross-bridged cyclam ligand: a comprehensive study.
    Dong L; Wang Y; Lv Y; Chen Z; Mei F; Xiong H; Yin G
    Inorg Chem; 2013 May; 52(9):5418-27. PubMed ID: 23600453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational flexibility of the tetradentate ligand (tBu)N4 is essential for the stabilization of ((tBu)N4)Pd(III) complexes.
    Khusnutdinova JR; Rath NP; Mirica LM
    Inorg Chem; 2014 Dec; 53(24):13112-29. PubMed ID: 25424045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Couple Involving NO
    Wenzel MN; Owens PK; Bray JT; Lynam JM; Aguiar PM; Reed C; Lee JD; Hamilton JF; Whitwood AC; Fairlamb IJ
    J Am Chem Soc; 2017 Jan; 139(3):1177-1190. PubMed ID: 28075565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of transition-metal (Cu or Pd)-catalyzed synthesis of benzimidazoles from amidines: theoretical investigation.
    Li J; Gu H; Wu C; Du L
    Dalton Trans; 2014 Nov; 43(44):16769-79. PubMed ID: 25278296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,2-Oxopalladation versus pi-allyl palladium route. A regioconvergent approach to a key intermediate for cyclopentanoids synthesis. New insights into the Pd(II)-catalyzed lactonization reaction.
    Zanoni G; Porta A; Meriggi A; Franzini M; Vidari G
    J Org Chem; 2002 Aug; 67(17):6064-9. PubMed ID: 12182643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.