These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 26390340)
1. Cuboplexes: Topologically Active siRNA Delivery. Kim H; Leal C ACS Nano; 2015 Oct; 9(10):10214-26. PubMed ID: 26390340 [TBL] [Abstract][Full Text] [Related]
2. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781 [TBL] [Abstract][Full Text] [Related]
3. Microfluidics Synthesis of Gene Silencing Cubosomes. Kim H; Sung J; Chang Y; Alfeche A; Leal C ACS Nano; 2018 Sep; 12(9):9196-9205. PubMed ID: 30081623 [TBL] [Abstract][Full Text] [Related]
4. Cuboplex-Mediated Nonviral Delivery of Functional siRNA to Chinese Hamster Ovary (CHO) Cells. Sarkar S; Tran N; Soni SK; Nasa Z; Drummond CJ; Conn CE ACS Appl Mater Interfaces; 2021 Jan; 13(2):2336-2345. PubMed ID: 33410653 [TBL] [Abstract][Full Text] [Related]
5. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. Li Y; Cheng Q; Jiang Q; Huang Y; Liu H; Zhao Y; Cao W; Ma G; Dai F; Liang X; Liang Z; Zhang X J Control Release; 2014 Feb; 176():104-14. PubMed ID: 24365128 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical characterization of anionic lipid-based ternary siRNA complexes. Kapoor M; Burgess DJ Biochim Biophys Acta; 2012 Jul; 1818(7):1603-12. PubMed ID: 22465067 [TBL] [Abstract][Full Text] [Related]
7. Disregarded Effect of Biological Fluids in siRNA Delivery: Human Ascites Fluid Severely Restricts Cellular Uptake of Nanoparticles. Dakwar GR; Braeckmans K; Demeester J; Ceelen W; De Smedt SC; Remaut K ACS Appl Mater Interfaces; 2015 Nov; 7(43):24322-9. PubMed ID: 26470057 [TBL] [Abstract][Full Text] [Related]
8. One-step encapsulation of siRNA between lipid-layers of multi-layer polycation liposomes by lipoplex freeze-thawing. Koide H; Okamoto A; Tsuchida H; Ando H; Ariizumi S; Kiyokawa C; Hashimoto M; Asai T; Dewa T; Oku N J Control Release; 2016 Apr; 228():1-8. PubMed ID: 26826309 [TBL] [Abstract][Full Text] [Related]
9. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation. Kubota K; Onishi K; Sawaki K; Li T; Mitsuoka K; Sato T; Takeoka S Int J Nanomedicine; 2017; 12():5121-5133. PubMed ID: 28790820 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical characterization techniques for lipid based delivery systems for siRNA. Kapoor M; Burgess DJ; Patil SD Int J Pharm; 2012 May; 427(1):35-57. PubMed ID: 21979250 [TBL] [Abstract][Full Text] [Related]
11. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery. Zhang Y; Arrington L; Boardman D; Davis J; Xu Y; DiFelice K; Stirdivant S; Wang W; Budzik B; Bawiec J; Deng J; Beutner G; Seifried D; Stanton M; Gindy M; Leone A J Control Release; 2014 Jan; 174():7-14. PubMed ID: 24240015 [TBL] [Abstract][Full Text] [Related]
12. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758 [TBL] [Abstract][Full Text] [Related]
13. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Spagnou S; Miller AD; Keller M Biochemistry; 2004 Oct; 43(42):13348-56. PubMed ID: 15491141 [TBL] [Abstract][Full Text] [Related]
14. Delivery of DNA and siRNA by novel gemini-like amphiphilic peptides. Damen M; Aarbiou J; van Dongen SF; Buijs-Offerman RM; Spijkers PP; van den Heuvel M; Kvashnina K; Nolte RJ; Scholte BJ; Feiters MC J Control Release; 2010 Jul; 145(1):33-9. PubMed ID: 20381554 [TBL] [Abstract][Full Text] [Related]
15. Agitation during lipoplex formation harmonizes the interaction of siRNA to cationic liposomes. Barichello JM; Kizuki S; Tagami T; Soares LA; Ishida T; Kikuchi H; Kiwada H Int J Pharm; 2012 Jul; 430(1-2):359-65. PubMed ID: 22525078 [TBL] [Abstract][Full Text] [Related]
16. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation. He S; Fan W; Wu N; Zhu J; Miao Y; Miao X; Li F; Zhang X; Gan Y Nano Lett; 2018 Apr; 18(4):2411-2419. PubMed ID: 29561622 [TBL] [Abstract][Full Text] [Related]
17. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. Singh Y; Tomar S; Khan S; Meher JG; Pawar VK; Raval K; Sharma K; Singh PK; Chaurasia M; Surendar Reddy B; Chourasia MK J Control Release; 2015 Dec; 220(Pt A):368-387. PubMed ID: 26528900 [TBL] [Abstract][Full Text] [Related]
18. The gene-silencing effect of siRNA in cationic lipoplexes is enhanced by incorporating pDNA in the complex. Tagami T; Barichello JM; Kikuchi H; Ishida T; Kiwada H Int J Pharm; 2007 Mar; 333(1-2):62-9. PubMed ID: 17097247 [TBL] [Abstract][Full Text] [Related]
19. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Zheng L; Bandara SR; Tan Z; Leal C Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2301067120. PubMed ID: 37364130 [TBL] [Abstract][Full Text] [Related]
20. A QCM-D and SAXS Study of the Interaction of Functionalised Lyotropic Liquid Crystalline Lipid Nanoparticles with siRNA. Tajik-Ahmadabad B; Mechler A; Muir BW; McLean K; Hinton TM; Separovic F; Polyzos A Chembiochem; 2017 May; 18(10):921-930. PubMed ID: 28233412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]