These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26390439)

  • 1. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging.
    Sun Y; Thakor N
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):463-77. PubMed ID: 26390439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Principles of photoplethysmography and its applications in physiological measurements].
    Shi P; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):899-904. PubMed ID: 24059078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
    Hu S; Azorin-Peris V; Zheng J
    J Healthc Eng; 2013; 4(4):505-28. PubMed ID: 24287429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise.
    Sun Y; Hu S; Azorin-Peris V; Greenwald S; Chambers J; Zhu Y
    J Biomed Opt; 2011 Jul; 16(7):077010. PubMed ID: 21806290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models.
    Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmography and its application in clinical physiological measurement.
    Allen J
    Physiol Meas; 2007 Mar; 28(3):R1-39. PubMed ID: 17322588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncontact imaging photoplethysmography to effectively access pulse rate variability.
    Sun Y; Hu S; Azorin-Peris V; Kalawsky R; Greenwald S
    J Biomed Opt; 2013 Jun; 18(6):061205. PubMed ID: 23111602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths.
    Marcinkevics Z; Rubins U; Zaharans J; Miscuks A; Urtane E; Ozolina-Moll L
    J Biomed Opt; 2016 Mar; 21(3):35005. PubMed ID: 27027825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers.
    Rasche S; Huhle R; Junghans E; de Abreu MG; Ling Y; Trumpp A; Zaunseder S
    Sci Rep; 2020 Oct; 10(1):16464. PubMed ID: 33020579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iPPG 2 cPPG: Reconstructing contact from imaging photoplethysmographic signals using U-Net architectures.
    Bousefsaf F; Djeldjli D; Ouzar Y; Maaoui C; Pruski A
    Comput Biol Med; 2021 Nov; 138():104860. PubMed ID: 34562680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.
    Sun Y; Papin C; Azorin-Peris V; Kalawsky R; Greenwald S; Hu S
    J Biomed Opt; 2012 Mar; 17(3):037005. PubMed ID: 22502577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.
    Remer I; Bilenca A
    J Biophotonics; 2015 Nov; 8(11-12):902-7. PubMed ID: 25908015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control.
    Baek HJ; Chung GS; Kim KK; Kim JS; Park KS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring.
    Iakovlev D; Hu S; Hassan H; Dwyer V; Ashayer-Soltani R; Hunt C; Shen J
    Biosensors (Basel); 2018 Mar; 8(2):. PubMed ID: 29596396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor Fusion for Robust Heartbeat Detection during Driving.
    Warnecke JM; Boeker N; Spicher N; Wang J; Flormann M; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():447-450. PubMed ID: 34891329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BioThreads: a novel VLIW-based chip multiprocessor for accelerating biomedical image processing applications.
    Stevens D; Chouliaras V; Azorin-Peris V; Zheng J; Echiadis A; Hu S
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):257-68. PubMed ID: 23853147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frame Registration for Motion Compensation in Imaging Photoplethysmography.
    Iakovlev D; Hu S; Dwyer V
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.
    Sandberg M; Zhang Q; Styf J; Gerdle B; Lindberg LG
    Acta Physiol Scand; 2005 Apr; 183(4):335-43. PubMed ID: 15799770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress.
    Wong MY; Pickwell-MacPherson E; Zhang YT
    Physiol Meas; 2010 Jul; 31(7):1065-74. PubMed ID: 20585149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.