These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 26390442)

  • 1. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.
    Lee SM; Kim JH; Byeon HJ; Choi YY; Park KS; Lee SH
    J Neural Eng; 2013 Jun; 10(3):036006. PubMed ID: 23574793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording.
    Hoon Lee J; Min Lee S; Jin Byeon H; Sook Hong J; Suk Park K; Lee SH
    J Neural Eng; 2014 Aug; 11(4):046014. PubMed ID: 24963747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel active comb-shaped dry electrode for EEG measurement in hairy site.
    Huang YJ; Wu CY; Wong AM; Lin BS
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):256-63. PubMed ID: 25137719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
    Baek HJ; Lee HJ; Lim YG; Park KS
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3422-31. PubMed ID: 22961261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesive Wearable Sensors for Electroencephalography from Hairy Scalp.
    Zhang A; Shyam AB; Cunningham AM; Williams C; Brissenden A; Bartley A; Amsden B; Docoslis A; Kontopoulou M; Ameri SK
    Adv Healthc Mater; 2023 Sep; 12(22):e2300142. PubMed ID: 37165724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroencephalogram measurement from the hairy part of the scalp using polymer-based dry microneedle electrodes.
    Arai M; Kudo Y; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3165-8. PubMed ID: 26736964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection.
    Wei CS; Wang YT; Lin CT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6638-41. PubMed ID: 26737815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 17. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.
    Jung HC; Moon JH; Baek DH; Lee JH; Choi YY; Hong JS; Lee SH
    IEEE Trans Biomed Eng; 2012 May; 59(5):1472-9. PubMed ID: 22410324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.