BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26391313)

  • 1. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells.
    Li N; Xiao T; Zhang Z; He R; Wen D; Cao Y; Zhang W; Chen Y
    Nanoscale; 2015 Oct; 7(39):16354-60. PubMed ID: 26391313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells.
    Wu X; Xiao T; Luo Z; He R; Cao Y; Guo Z; Zhang W; Chen Y
    J Nanobiotechnology; 2018 Sep; 16(1):65. PubMed ID: 30205821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of Circulating Tumor Cells.
    Tang S; Shen H; Hao Y; Huang Z; Tao Y; Peng Y; Guo Y; Xie G; Feng W
    Biosens Bioelectron; 2018 May; 104():72-78. PubMed ID: 29324284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes.
    Liu H; Xu S; He Z; Deng A; Zhu JJ
    Anal Chem; 2013 Mar; 85(6):3385-92. PubMed ID: 23418929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs.
    Shen H; Yang J; Chen Z; Chen X; Wang L; Hu J; Ji F; Xie G; Feng W
    Biosens Bioelectron; 2016 Jul; 81():495-502. PubMed ID: 27016910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition and sensitive detection of CTCs using a controllable label-free electrochemical cytosensor.
    Zhang H; Liang F; Wu X; Liu Y; Chen A
    Mikrochim Acta; 2020 Aug; 187(9):487. PubMed ID: 32761498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device.
    Wang H; Zhou C; Sun X; Jian Y; Kong Q; Cui K; Ge S; Yu J
    Biosens Bioelectron; 2018 Oct; 117():651-658. PubMed ID: 30005386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time circulating tumor cells detection via highly sensitive needle-like cytosensor-demonstrated by a blood flow simulation.
    Weng WH; Ho IL; Pang CC; Pang SN; Pan TM; Leung WH
    Biosens Bioelectron; 2018 Sep; 116():51-59. PubMed ID: 29859397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor.
    Gu Y; Ju C; Li Y; Shang Z; Wu Y; Jia Y; Niu Y
    Biosens Bioelectron; 2015 Apr; 66():24-31. PubMed ID: 25460877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-mediated Fe
    Yang L; Guo H; Hou T; Zhang J; Li F
    Biosens Bioelectron; 2023 Aug; 234():115346. PubMed ID: 37148800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers.
    Yang F; Yang Z; Zhuo Y; Chai Y; Yuan R
    Biosens Bioelectron; 2015 Apr; 66():356-62. PubMed ID: 25463643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array.
    An L; Wang G; Han Y; Li T; Jin P; Liu S
    Lab Chip; 2018 Jan; 18(2):335-342. PubMed ID: 29260185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite.
    Zhou J; Zheng Y; Liu J; Bing X; Hua J; Zhang H
    J Pharm Biomed Anal; 2016 Jan; 117():333-7. PubMed ID: 26414059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.
    Sun D; Lu J; Chen Z; Yu Y; Mo M
    Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au nanoparticles-3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide.
    Li J; Xie J; Gao L; Li CM
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2726-34. PubMed ID: 25580718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Cytosensor Based on a Gold Nanostar-Decorated Graphene Oxide Platform for Gastric Cancer Cell Detection.
    Zhang A; Liu Q; Huang Z; Zhang Q; Wang R; Cui D
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug response of captured BT20 cells and evaluation of circulating tumor cells on a silicon nanowire platform.
    Kim DJ; Lee WY; Park NW; Kim GS; Lee KM; Kim J; Choi MK; Lee GH; Han W; Lee SK
    Biosens Bioelectron; 2015 May; 67():370-8. PubMed ID: 25216977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels.
    Yan M; Sun G; Liu F; Lu J; Yu J; Song X
    Anal Chim Acta; 2013 Oct; 798():33-9. PubMed ID: 24070481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A photoelectrochemical cytosensor based on a Bi
    Guo Y; Guo B; Liu Z; Li J; Gao L; Jiang H; Wang J
    Biomater Sci; 2024 Mar; 12(6):1529-1535. PubMed ID: 38298092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual recognition strategy for accurate detection of CTCs based on novel branched PtAuRh trimetallic nanospheres.
    Cai J; Shen H; Wang Y; Peng Y; Tang S; Zhu Y; Liu Q; Li B; Xie G; Feng W
    Biosens Bioelectron; 2021 Mar; 176():112893. PubMed ID: 33342693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.