BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26391396)

  • 1. Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed Dark Adaption in Mice.
    Sahu B; Sun W; Perusek L; Parmar V; Le YZ; Griswold MD; Palczewski K; Maeda A
    J Biol Chem; 2015 Nov; 290(45):27239-27247. PubMed ID: 26391396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo.
    Kim TS; Maeda A; Maeda T; Heinlein C; Kedishvili N; Palczewski K; Nelson PS
    J Biol Chem; 2005 Mar; 280(10):8694-704. PubMed ID: 15634683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of retinol dehydrogenase 10 in the cone visual cycle.
    Xue Y; Sato S; Razafsky D; Sahu B; Shen SQ; Potter C; Sandell LL; Corbo JC; Palczewski K; Maeda A; Hodzic D; Kefalov VJ
    Sci Rep; 2017 May; 7(1):2390. PubMed ID: 28539612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins.
    Farjo KM; Moiseyev G; Takahashi Y; Crouch RK; Ma JX
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5089-97. PubMed ID: 19458327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus.
    Jang GF; Van Hooser JP; Kuksa V; McBee JK; He YG; Janssen JJ; Driessen CA; Palczewski K
    J Biol Chem; 2001 Aug; 276(35):32456-65. PubMed ID: 11418621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RPE Visual Cycle and Biochemical Phenotypes of Mutant Mouse Models.
    Sahu B; Maeda A
    Methods Mol Biol; 2018; 1753():89-102. PubMed ID: 29564783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in rod and cone function in mouse model of Fundus albipunctatus after pharmacologic treatment with 9-cis-retinal.
    Maeda A; Maeda T; Palczewski K
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4540-6. PubMed ID: 17003450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE.
    Wu BX; Chen Y; Chen Y; Fan J; Rohrer B; Crouch RK; Ma JX
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3365-72. PubMed ID: 12407145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinol dehydrogenases (RDHs) in the visual cycle.
    Parker RO; Crouch RK
    Exp Eye Res; 2010 Dec; 91(6):788-92. PubMed ID: 20801113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina.
    Haeseleer F; Jang GF; Imanishi Y; Driessen CAGG; Matsumura M; Nelson PS; Palczewski K
    J Biol Chem; 2002 Nov; 277(47):45537-45546. PubMed ID: 12226107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redundant and unique roles of retinol dehydrogenases in the mouse retina.
    Maeda A; Maeda T; Sun W; Zhang H; Baehr W; Palczewski K
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19565-70. PubMed ID: 18048336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S; Kefalov VJ
    J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters.
    Driessen CA; Winkens HJ; Hoffmann K; Kuhlmann LD; Janssen BP; Van Vugt AH; Van Hooser JP; Wieringa BE; Deutman AF; Palczewski K; Ruether K; Janssen JJ
    Mol Cell Biol; 2000 Jun; 20(12):4275-87. PubMed ID: 10825191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of mouse RDH11 as a retinol dehydrogenase involved in dark adaptation in vivo.
    Kasus-Jacobi A; Ou J; Birch DG; Locke KG; Shelton JM; Richardson JA; Murphy AJ; Valenzuela DM; Yancopoulos GD; Edwards AO
    J Biol Chem; 2005 May; 280(21):20413-20. PubMed ID: 15790565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo.
    Maeda T; Van Hooser JP; Driessen CA; Filipek S; Janssen JJ; Palczewski K
    J Neurochem; 2003 May; 85(4):944-56. PubMed ID: 12716426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function.
    Sahu B; Maeda A
    Nutrients; 2016 Nov; 8(11):. PubMed ID: 27879662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man.
    Cideciyan AV; Haeseleer F; Fariss RN; Aleman TS; Jang GF; Verlinde CLMJ; Marmor MF; Jacobson SG; Palczewski K
    Vis Neurosci; 2000; 17(5):667-678. PubMed ID: 11153648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute radiolabeling of retinoids in eye tissues of normal and rpe65-deficient mice.
    Qtaishat NM; Redmond TM; Pepperberg DR
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1435-46. PubMed ID: 12657577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium.
    Wen B; Li S; Li H; Chen Y; Ma X; Wang J; Lu F; Qu J; Hou L
    Sci Rep; 2016 Feb; 6():21208. PubMed ID: 26876013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.