BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26392044)

  • 1. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae.
    Rugbjerg P; Knuf C; Förster J; Sommer MO
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26392044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry.
    Mateus C; Avery SV
    Yeast; 2000 Oct; 16(14):1313-23. PubMed ID: 11015728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus.
    Lee KS; Kim JS; Heo P; Yang TJ; Sung YJ; Cheon Y; Koo HM; Yu BJ; Seo JH; Jin YS; Park JC; Kweon DH
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2029-41. PubMed ID: 22911091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid method to determine the stress status of Saccharomyces cerevisiae by monitoring the expression of a Hsp12:green fluorescent protein (GFP) construct under the control of the Hsp12 promoter.
    Karreman RJ; Lindsey GG
    J Biomol Screen; 2005 Apr; 10(3):253-9. PubMed ID: 15809321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity.
    Kaishima M; Ishii J; Matsuno T; Fukuda N; Kondo A
    Sci Rep; 2016 Oct; 6():35932. PubMed ID: 27782154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.
    Sun J; Shao Z; Zhao H; Nair N; Wen F; Xu JH; Zhao H
    Biotechnol Bioeng; 2012 Aug; 109(8):2082-92. PubMed ID: 22383307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Saccharomyces cerevisiae expression plasmids.
    Drew D; Kim H
    Methods Mol Biol; 2012; 866():41-6. PubMed ID: 22454112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae.
    Huang D; Shusta EV
    Biotechnol Prog; 2005; 21(2):349-57. PubMed ID: 15801770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impediments to secretion of green fluorescent protein and its fusion from Saccharomyces cerevisiae.
    Li J; Xu H; Bentley WE; Rao G
    Biotechnol Prog; 2002; 18(4):831-8. PubMed ID: 12153318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeast Saccharomyces cerevisiae.
    Prein B; Natter K; Kohlwein SD
    FEBS Lett; 2000 Nov; 485(1):29-34. PubMed ID: 11086160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rrnA promoter as a tool for the improved expression of heterologous genes in cyanobacteria.
    Chungjatupornchai W; Fa-Aroonsawat S
    Microbiol Res; 2014; 169(5-6):361-8. PubMed ID: 24140155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae.
    Song X; Liu Q; Mao J; Wu Y; Li Y; Gao K; Zhang X; Bai Y; Xu H; Qiao M
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28922845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated bioprocessing in Saccharomyces cerevisiae using green fluorescent protein as a fusion partner.
    Li J; Xu H; Herber WK; Bentley WE; Rao G
    Biotechnol Bioeng; 2002 Sep; 79(6):682-93. PubMed ID: 12209816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of CgGPD gene promoter from Candida glycerinogenes by fluorescent protein].
    Ding C; Rao Z; Zhuge B; Shen W; Chen X; Fang H; Zhuge J
    Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1013-8. PubMed ID: 18956748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography.
    Scharff-Poulsen P; Pedersen PA
    PLoS One; 2013; 8(10):e76851. PubMed ID: 24124599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of an engineered yeast with glucose-inducible emission of green fluorescence from the cell surface.
    Ye K; Shibasaki S; Ueda M; Murai T; Kamasawa N; Osumi M; Shimizu K; Tanaka A
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):90-6. PubMed ID: 10952010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions.
    Huang D; Shusta EV
    Appl Environ Microbiol; 2006 Dec; 72(12):7748-59. PubMed ID: 17028228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage.
    Suzuki H; Sakabe T; Hirose Y; Eki T
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):659-671. PubMed ID: 27766356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.
    Ishii J; Kondo T; Makino H; Ogura A; Matsuda F; Kondo A
    FEMS Yeast Res; 2014 May; 14(3):399-411. PubMed ID: 24447461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae.
    Stagoj MN; Comino A; Komel R
    FEMS Microbiol Lett; 2005 Mar; 244(1):105-10. PubMed ID: 15727828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.