These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 26392149)

  • 1. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.
    Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D
    Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis.
    Xu L; Da L; Plouffe SW; Chong J; Kool E; Wang D
    DNA Repair (Amst); 2014 Jul; 19():71-83. PubMed ID: 24767259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications.
    Shin JH; Xu L; Wang D
    Transcription; 2016 May; 7(3):57-62. PubMed ID: 27105138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity.
    Kellinger MW; Ulrich S; Chong J; Kool ET; Wang D
    J Am Chem Soc; 2012 May; 134(19):8231-40. PubMed ID: 22509745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity.
    Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis.
    Kellinger MW; Park GY; Chong J; Lippard SJ; Wang D
    J Am Chem Soc; 2013 Sep; 135(35):13054-61. PubMed ID: 23927577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function studies of the RNA polymerase II elongation complex.
    Brueckner F; Armache KJ; Cheung A; Damsma GE; Kettenberger H; Lehmann E; Sydow J; Cramer P
    Acta Crystallogr D Biol Crystallogr; 2009 Feb; 65(Pt 2):112-20. PubMed ID: 19171965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
    Oh J; Xu J; Chong J; Wang D
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA polymerase II transcriptional machinery and its epigenetic context.
    Barrero MJ; Malik S
    Subcell Biochem; 2013; 61():237-59. PubMed ID: 23150254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II.
    Wang W; Walmacq C; Chong J; Kashlev M; Wang D
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Biology of RNA Polymerase II Transcription: 20 Years On.
    Osman S; Cramer P
    Annu Rev Cell Dev Biol; 2020 Oct; 36():1-34. PubMed ID: 32822539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast.
    Koyama H; Ito T; Nakanishi T; Sekimizu K
    Genes Cells; 2007 May; 12(5):547-59. PubMed ID: 17535246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of RNA-dependent RNA polymerase II activity.
    Lehmann E; Brueckner F; Cramer P
    Nature; 2007 Nov; 450(7168):445-9. PubMed ID: 18004386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis.
    Xu L; Wang W; Wu J; Shin JH; Wang P; Unarta IC; Chong J; Wang Y; Wang D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):E7082-E7091. PubMed ID: 28784758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity.
    Yamaguchi Y; Mura T; Chanarat S; Okamoto S; Handa H
    Genes Cells; 2007 Jul; 12(7):863-75. PubMed ID: 17584298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of transcription elongation.
    Martinez-Rucobo FW; Cramer P
    Biochim Biophys Acta; 2013 Jan; 1829(1):9-19. PubMed ID: 22982352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II.
    Konovalov KA; Pardo-Avila F; Tse CKM; Oh J; Wang D; Huang X
    J Biol Chem; 2019 Mar; 294(13):4924-4933. PubMed ID: 30718278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA photodamage recognition by RNA polymerase II.
    Brueckner F; Cramer P
    FEBS Lett; 2007 Jun; 581(15):2757-60. PubMed ID: 17521634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of template backbone heterogeneity on RNA polymerase II transcription.
    Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D
    Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.