BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26392246)

  • 1. Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution.
    Singh C; Koduri LV; Dhawale V; Bhatt TD; Kumar R; Grover V; Tikoo K; Suresh S
    Int J Pharm; 2015 Nov; 495(2):627-32. PubMed ID: 26392246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry-Powder Inhaler Formulation of Rifampicin: An Improved Targeted Delivery System for Alveolar Tuberculosis.
    Rawal T; Kremer L; Halloum I; Butani S
    J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):388-398. PubMed ID: 28510480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro-In Vivo Evaluation of Novel Co-spray Dried Rifampicin Phospholipid Lipospheres for Oral Delivery.
    Singh C; Koduri LV; Bhatt TD; Jhamb SS; Mishra V; Gill MS; Suresh S
    AAPS PharmSciTech; 2017 Jan; 18(1):138-146. PubMed ID: 26902373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin.
    Pai RV; Jain RR; Bannalikar AS; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):179-95. PubMed ID: 26406162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach.
    Patil-Gadhe A; Pokharkar V
    Pulm Pharmacol Ther; 2014 Apr; 27(2):197-207. PubMed ID: 23916767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance.
    Patil-Gadhe A; Kyadarkunte A; Patole M; Pokharkar V
    Eur J Pharm Biopharm; 2014 Sep; 88(1):169-77. PubMed ID: 25078860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs.
    Garcia Contreras L; Sung J; Ibrahim M; Elbert K; Edwards D; Hickey A
    Mol Pharm; 2015 Aug; 12(8):2642-50. PubMed ID: 25942002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin.
    Kadota K; Yanagawa Y; Tachikawa T; Deki Y; Uchiyama H; Shirakawa Y; Tozuka Y
    Int J Pharm; 2019 Jan; 555():280-290. PubMed ID: 30471373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs.
    Kadota K; Senda A; Tagishi H; Ayorinde JO; Tozuka Y
    Int J Pharm; 2017 Jan; 517(1-2):8-18. PubMed ID: 27913241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new respirable form of rifampicin.
    Son YJ; McConville JT
    Eur J Pharm Biopharm; 2011 Aug; 78(3):366-76. PubMed ID: 21324356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis.
    Ohashi K; Kabasawa T; Ozeki T; Okada H
    J Control Release; 2009 Apr; 135(1):19-24. PubMed ID: 19121349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats.
    Khadka P; Sinha S; Tucker IG; Dummer J; Hill PC; Katare R; Das SC
    Eur J Pharm Biopharm; 2021 May; 162():1-11. PubMed ID: 33639255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs.
    Melis V; Manca ML; Bullita E; Tamburini E; Castangia I; Cardia MC; Valenti D; Fadda AM; Peris JE; Manconi M
    Colloids Surf B Biointerfaces; 2016 Jul; 143():301-308. PubMed ID: 27022870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary delivery of pyrazinamide-loaded large porous particles.
    Pham DD; Grégoire N; Couet W; Gueutin C; Fattal E; Tsapis N
    Eur J Pharm Biopharm; 2015 Aug; 94():241-50. PubMed ID: 26036447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel rifampicin-phospholipid complex for tubercular therapy: synthesis, physicochemical characterization and in-vivo evaluation.
    Singh C; Bhatt TD; Gill MS; Suresh S
    Int J Pharm; 2014 Jan; 460(1-2):220-7. PubMed ID: 24188983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhalation Potential of Rifampicin-Loaded Novel Metal-Organic Frameworks for Improved Lung Delivery: Physicochemical Characterization,
    Kujur S; Singh A; Singh C
    J Aerosol Med Pulm Drug Deliv; 2022 Oct; 35(5):259-268. PubMed ID: 35708625
    [No Abstract]   [Full Text] [Related]  

  • 17. Preparation of sustained release rifampicin microparticles for inhalation.
    Son YJ; McConville JT
    J Pharm Pharmacol; 2012 Sep; 64(9):1291-302. PubMed ID: 22881441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery.
    Song X; Lin Q; Guo L; Fu Y; Han J; Ke H; Sun X; Gong T; Zhang Z
    Pharm Res; 2015 May; 32(5):1741-51. PubMed ID: 25407545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages.
    Vyas SP; Kannan ME; Jain S; Mishra V; Singh P
    Int J Pharm; 2004 Jan; 269(1):37-49. PubMed ID: 14698575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin.
    Manca ML; Valenti D; Sales OD; Nacher A; Fadda AM; Manconi M
    Int J Pharm; 2014 Sep; 472(1-2):102-9. PubMed ID: 24928129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.