BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 26392286)

  • 21. Structural Variation Shapes the Landscape of Recombination in Mouse.
    Morgan AP; Gatti DM; Najarian ML; Keane TM; Galante RJ; Pack AI; Mott R; Churchill GA; de Villena FP
    Genetics; 2017 Jun; 206(2):603-619. PubMed ID: 28592499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide variation in recombination rate in Eucalyptus.
    Gion JM; Hudson CJ; Lesur I; Vaillancourt RE; Potts BM; Freeman JS
    BMC Genomics; 2016 Aug; 17():590. PubMed ID: 27507140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici.
    Lendenmann MH; Croll D; Palma-Guerrero J; Stewart EL; McDonald BA
    Heredity (Edinb); 2016 Apr; 116(4):384-94. PubMed ID: 26758189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini.
    Anderson C; Khan MA; Catanzariti AM; Jack CA; Nemri A; Lawrence GJ; Upadhyaya NM; Hardham AR; Ellis JG; Dodds PN; Jones DA
    BMC Genomics; 2016 Aug; 17(1):667. PubMed ID: 27550217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.
    Croll D; McDonald BA
    Mol Ecol; 2017 Apr; 26(7):2027-2040. PubMed ID: 27696587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola.
    Stukenbrock EH; Jørgensen FG; Zala M; Hansen TT; McDonald BA; Schierup MH
    PLoS Genet; 2010 Dec; 6(12):e1001189. PubMed ID: 21203495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interspecific Gene Exchange Introduces High Genetic Variability in Crop Pathogen.
    Feurtey A; Stevens DM; Stephan W; Stukenbrock EH
    Genome Biol Evol; 2019 Nov; 11(11):3095-3105. PubMed ID: 31603209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meiotic recombination hotspots - a comparative view.
    Choi K; Henderson IR
    Plant J; 2015 Jul; 83(1):52-61. PubMed ID: 25925869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici.
    McDonald MC; Williams AH; Milgate A; Pattemore JA; Solomon PS; Hane JK
    Fungal Genet Biol; 2015 Jun; 79():71-5. PubMed ID: 26092791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fine-scale map of recombination rates and hotspots across the human genome.
    Myers S; Bottolo L; Freeman C; McVean G; Donnelly P
    Science; 2005 Oct; 310(5746):321-4. PubMed ID: 16224025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species.
    Stukenbrock EH; Christiansen FB; Hansen TT; Dutheil JY; Schierup MH
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10954-9. PubMed ID: 22711811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution.
    Laurent B; Palaiokostas C; Spataro C; Moinard M; Zehraoui E; Houston RD; Foulongne-Oriol M
    Mol Plant Pathol; 2018 Feb; 19(2):341-354. PubMed ID: 27998012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombination hotspots and block structure of linkage disequilibrium in the human genome exemplified by detailed analysis of PGM1 on 1p31.
    Rana NA; Ebenezer ND; Webster AR; Linares AR; Whitehouse DB; Povey S; Hardcastle AJ
    Hum Mol Genet; 2004 Dec; 13(24):3089-102. PubMed ID: 15509594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic control of meiotic recombination in plants.
    Yelina N; Diaz P; Lambing C; Henderson IR
    Sci China Life Sci; 2015 Mar; 58(3):223-31. PubMed ID: 25651968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fine-scale maps of recombination rates and hotspots in the mouse genome.
    Brunschwig H; Levi L; Ben-David E; Williams RW; Yakir B; Shifman S
    Genetics; 2012 Jul; 191(3):757-64. PubMed ID: 22562932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Red Queen theory of recombination hotspots.
    Ubeda F; Wilkins JF
    J Evol Biol; 2011 Mar; 24(3):541-53. PubMed ID: 21159001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei.
    Akamatsu HO; Chilvers MI; Kaiser WJ; Peever TL
    Fungal Biol; 2012 Nov; 116(11):1119-33. PubMed ID: 23153803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus.
    Zhong S; Steffenson BJ; Martinez JP; Ciuffetti LM
    Mol Plant Microbe Interact; 2002 May; 15(5):481-92. PubMed ID: 12036279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice.
    Marand AP; Zhao H; Zhang W; Zeng Z; Fang C; Jiang J
    Plant Cell; 2019 Mar; 31(3):645-662. PubMed ID: 30705136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.
    Billings T; Sargent EE; Szatkiewicz JP; Leahy N; Kwak IY; Bektassova N; Walker M; Hassold T; Graber JH; Broman KW; Petkov PM
    PLoS One; 2010 Dec; 5(12):e15340. PubMed ID: 21170346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.