These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26392383)

  • 1. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.
    Aquilina L; Vergnaud-Ayraud V; Les Landes AA; Pauwels H; Davy P; Pételet-Giraud E; Labasque T; Roques C; Chatton E; Bour O; Ben Maamar S; Dufresne A; Khaska M; Le Gal La Salle C; Barbecot F
    Sci Rep; 2015 Sep; 5():14132. PubMed ID: 26392383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil).
    Chatton E; Aquilina L; Pételet-Giraud E; Cary L; Bertrand G; Labasque T; Hirata R; Martins V; Montenegro S; Vergnaud V; Aurouet A; Kloppmann W; Pauwels
    Sci Total Environ; 2016 Nov; 569-570():1114-1125. PubMed ID: 27387803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA.
    Chaudhuri S; Ale S
    Sci Total Environ; 2014 Feb; 472():370-80. PubMed ID: 24295753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 350,000-year history of groundwater recharge in the southern Great Basin, USA.
    Jackson TR; Steidle SD; Wendt KA; Dublyansky Y; Edwards RL; Spötl C
    Commun Earth Environ; 2023; 4(1):98. PubMed ID: 38665190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shallow urban aquifers under hyper-recharge equatorial conditions and strong anthropogenic constrains. Implications in terms of groundwater resources potential and integrated water resources management strategies.
    Nlend B; Celle-Jeanton H; Huneau F; Garel E; Boum-Nkot SN; Etame J
    Sci Total Environ; 2021 Feb; 757():143887. PubMed ID: 33310570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater resources in Brazil: a review of possible impacts caused by climate change.
    Hirata R; Conicelli BP
    An Acad Bras Cienc; 2012 Jun; 84(2):297-312. PubMed ID: 22634744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand.
    Pholkern K; Saraphirom P; Srisuk K
    Sci Total Environ; 2018 Aug; 633():1518-1535. PubMed ID: 29758903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopes in groundwater (
    Jiang W; Wang G; Sheng Y; Shi Z; Zhang H
    Sci Total Environ; 2019 May; 666():298-307. PubMed ID: 30798239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.
    Wu Y; Wang Y
    Environ Sci Process Impacts; 2014 May; 16(6):1469-79. PubMed ID: 24737419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-arid aquifer responses to forest restoration treatments and climate change.
    Wyatt CJ; O'Donnell FC; Springer AE
    Ground Water; 2015; 53(2):207-16. PubMed ID: 24665998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland.
    Gumuła-Kawęcka A; Jaworska-Szulc B; Szymkiewicz A; Gorczewska-Langner W; Angulo-Jaramillo R; Šimůnek J
    Sci Total Environ; 2023 Jun; 877():162904. PubMed ID: 36933729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic in Groundwater: The Deep Late Pleistocene Aquifers of the Western Bengal Basin.
    McArthur JM; Ghosal U; Sikdar PK; Ball JD
    Environ Sci Technol; 2016 Apr; 50(7):3469-76. PubMed ID: 27010474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the groundwater vulnerability for pollution at the pan African scale.
    Ouedraogo I; Defourny P; Vanclooster M
    Sci Total Environ; 2016 Feb; 544():939-53. PubMed ID: 26771208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh.
    Shibasaki N; Lei P; Kamata A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1919-32. PubMed ID: 17952793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paleo-climatic control on recharge and fresh-salt groundwater distribution in the Red River delta plain, Vietnam.
    Larsen F; Van Hoang H; Tran LV; Pham NQ
    Sci Rep; 2024 Sep; 14(1):21280. PubMed ID: 39261523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.
    Wong CI; Kromann JS; Hunt BB; Smith BA; Banner JL
    Ground Water; 2014; 52(4):624-39. PubMed ID: 24033308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.