BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26392408)

  • 21. Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations.
    Rinker DC; Simonti CN; McArthur E; Shaw D; Hodges E; Capra JA
    Nat Ecol Evol; 2020 Oct; 4(10):1332-1341. PubMed ID: 32719451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apparent variation in Neanderthal admixture among African populations is consistent with gene flow from Non-African populations.
    Wang S; Lachance J; Tishkoff SA; Hey J; Xing J
    Genome Biol Evol; 2013; 5(11):2075-81. PubMed ID: 24162011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apportioning archaic variants among modern populations.
    Witt KE; Villanea F; Loughran E; Zhang X; Huerta-Sanchez E
    Philos Trans R Soc Lond B Biol Sci; 2022 Jun; 377(1852):20200411. PubMed ID: 35430882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A haplotype at STAT2 Introgressed from neanderthals and serves as a candidate of positive selection in Papua New Guinea.
    Mendez FL; Watkins JC; Hammer MF
    Am J Hum Genet; 2012 Aug; 91(2):265-74. PubMed ID: 22883142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An indel introduced by Neanderthal introgression, rs3835124:ATTTATT > ATT, might contribute to prostate cancer risk by regulating PDK1 expression.
    Chen Y; Yu XY; Xu SJ; Shi XQ; Zhang XX; Sun C
    Ann Hum Genet; 2024 Mar; 88(2):126-137. PubMed ID: 37846608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms.
    Lowery RK; Uribe G; Jimenez EB; Weiss MA; Herrera KJ; Regueiro M; Herrera RJ
    Gene; 2013 Nov; 530(1):83-94. PubMed ID: 23872234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse African genomes reveal selection on ancient modern human introgressions in Neanderthals.
    Harris DN; Platt A; Hansen MEB; Fan S; McQuillan MA; Nyambo T; Mpoloka SW; Mokone GG; Belay G; Fokunang C; Njamnshi AK; Tishkoff SA
    Curr Biol; 2023 Nov; 33(22):4905-4916.e5. PubMed ID: 37837965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genomic landscape of Neanderthal ancestry in present-day humans.
    Sankararaman S; Mallick S; Dannemann M; Prüfer K; Kelso J; Pääbo S; Patterson N; Reich D
    Nature; 2014 Mar; 507(7492):354-7. PubMed ID: 24476815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The contribution of Neanderthal introgression to modern human traits.
    Reilly PF; Tjahjadi A; Miller SL; Akey JM; Tucci S
    Curr Biol; 2022 Sep; 32(18):R970-R983. PubMed ID: 36167050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neanderthal and Denisova tooth protein variants in present-day humans.
    Zanolli C; Hourset M; Esclassan R; Mollereau C
    PLoS One; 2017; 12(9):e0183802. PubMed ID: 28902892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression.
    McCoy RC; Wakefield J; Akey JM
    Cell; 2017 Feb; 168(5):916-927.e12. PubMed ID: 28235201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that RNA Viruses Drove Adaptive Introgression between Neanderthals and Modern Humans.
    Enard D; Petrov DA
    Cell; 2018 Oct; 175(2):360-371.e13. PubMed ID: 30290142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple Deeply Divergent Denisovan Ancestries in Papuans.
    Jacobs GS; Hudjashov G; Saag L; Kusuma P; Darusallam CC; Lawson DJ; Mondal M; Pagani L; Ricaut FX; Stoneking M; Metspalu M; Sudoyo H; Lansing JS; Cox MP
    Cell; 2019 May; 177(4):1010-1021.e32. PubMed ID: 30981557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture.
    Browning SR; Browning BL; Zhou Y; Tucci S; Akey JM
    Cell; 2018 Mar; 173(1):53-61.e9. PubMed ID: 29551270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A signature of Neanderthal introgression on molecular mechanisms of environmental responses.
    Findley AS; Zhang X; Boye C; Lin YL; Kalita CA; Barreiro L; Lohmueller KE; Pique-Regi R; Luca F
    PLoS Genet; 2021 Sep; 17(9):e1009493. PubMed ID: 34570765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation.
    Racimo F
    Genetics; 2016 Feb; 202(2):733-50. PubMed ID: 26596347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary and functional analyses of LRP5 in archaic and extant modern humans.
    Roca-Ayats N; Maceda I; Bruque CD; Martínez-Gil N; Garcia-Giralt N; Cozar M; Mellibovsky L; Van Hul W; Lao O; Grinberg D; Balcells S
    Hum Genomics; 2024 May; 18(1):53. PubMed ID: 38802968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An early modern human from Romania with a recent Neanderthal ancestor.
    Fu Q; Hajdinjak M; Moldovan OT; Constantin S; Mallick S; Skoglund P; Patterson N; Rohland N; Lazaridis I; Nickel B; Viola B; Prüfer K; Meyer M; Kelso J; Reich D; Pääbo S
    Nature; 2015 Aug; 524(7564):216-9. PubMed ID: 26098372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GWAS-identified schizophrenia risk SNPs at TSPAN18 are highly diverged between Europeans and East Asians.
    Liu J; Li M; Su B
    Am J Med Genet B Neuropsychiatr Genet; 2016 Dec; 171(8):1032-1040. PubMed ID: 27312590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition.
    Houldcroft CJ; Underdown SJ
    Am J Phys Anthropol; 2016 Jul; 160(3):379-88. PubMed ID: 27063929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.