These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26393285)

  • 1. Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation.
    Alexander SC; Busby KN; Cole CM; Zhou CY; Devaraj NK
    J Am Chem Soc; 2015 Oct; 137(40):12756-9. PubMed ID: 26393285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase.
    Tota EM; Devaraj NK
    J Am Chem Soc; 2023 Apr; 145(14):8099-8106. PubMed ID: 36988146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic covalent labeling of RNA with RNA transglycosylation at guanosine (RNA-TAG).
    Busby KN; Devaraj NK
    Methods Enzymol; 2020; 641():373-399. PubMed ID: 32713531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase.
    Tota EM; Devaraj NK
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Activated Control of Translation by Enzymatic Covalent mRNA Labeling.
    Zhang D; Zhou CY; Busby KN; Alexander SC; Devaraj NK
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2822-2826. PubMed ID: 29380476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile.
    Romier C; Reuter K; Suck D; Ficner R
    Biochemistry; 1996 Dec; 35(49):15734-9. PubMed ID: 8961936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.
    Ehret F; Zhou CY; Alexander SC; Zhang D; Devaraj NK
    Mol Pharm; 2018 Mar; 15(3):737-742. PubMed ID: 28749687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNA recognition by tRNA-guanine transglycosylase from Escherichia coli: the role of U33 in U-G-U sequence recognition.
    Nonekowski ST; Garcia GA
    RNA; 2001 Oct; 7(10):1432-41. PubMed ID: 11680848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate.
    Xie W; Liu X; Huang RH
    Nat Struct Biol; 2003 Oct; 10(10):781-8. PubMed ID: 12949492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design.
    Brenk R; Stubbs MT; Heine A; Reuter K; Klebe G
    Chembiochem; 2003 Oct; 4(10):1066-77. PubMed ID: 14523925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent turn-on probes for wash-free mRNA imaging
    Zhou CY; Alexander SC; Devaraj NK
    Chem Sci; 2017 Oct; 8(10):7169-7173. PubMed ID: 29081948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure.
    Garcia GA; Koch KA; Chong S
    J Mol Biol; 1993 May; 231(2):489-97. PubMed ID: 8323579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the intermediacy of covalent RNA enzyme complexes in RNA modification enzymes.
    Chervin SM; Kittendorf JD; Garcia GA
    Methods Enzymol; 2007; 425():121-37. PubMed ID: 17673081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding.
    Stengl B; Meyer EA; Heine A; Brenk R; Diederich F; Klebe G
    J Mol Biol; 2007 Jul; 370(3):492-511. PubMed ID: 17524419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification.
    Boschi-Muller S; Motorin Y
    Biochemistry (Mosc); 2013 Dec; 78(13):1392-404. PubMed ID: 24490730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses of (15)N-labeled pre-queuosine nucleobase derivatives.
    Levic J; Micura R
    Beilstein J Org Chem; 2014; 10():1914-8. PubMed ID: 25246950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricting the conformational heterogeneity of RNA by specific incorporation of 8-bromoguanosine.
    Proctor DJ; Kierzek E; Kierzek R; Bevilacqua PC
    J Am Chem Soc; 2003 Mar; 125(9):2390-1. PubMed ID: 12603116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity inhibitors of Zymomonas mobilis tRNA-guanine transglycosylase through convergent optimization.
    Barandun LJ; Immekus F; Kohler PC; Ritschel T; Heine A; Orlando P; Klebe G; Diederich F
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1798-807. PubMed ID: 23999303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-Azaguanine reporter of purine ionization states in structured RNAs.
    Da Costa CP; Fedor MJ; Scott LG
    J Am Chem Soc; 2007 Mar; 129(11):3426-32. PubMed ID: 17326637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.