These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26393307)
1. Controlling side reactions and self-discharge in high-voltage spinel cathodes: the critical role of surface crystallographic facets. Kuppan S; Duncan H; Chen G Phys Chem Chem Phys; 2015 Oct; 17(39):26471-81. PubMed ID: 26393307 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress of High Voltage Spinel LiMn Choi S; Feng W; Xia Y ACS Omega; 2024 Apr; 9(17):18688-18708. PubMed ID: 38708231 [TBL] [Abstract][Full Text] [Related]
3. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and electrochemical characterization of nano-sized LiMn1.5Ni0.5O4 cathode materials for lithium-ion batteries. Ju SH; Kim DW J Nanosci Nanotechnol; 2013 May; 13(5):3674-8. PubMed ID: 23858926 [TBL] [Abstract][Full Text] [Related]
5. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode - LiMn Hänsel C; Afyon S; Rupp JL Nanoscale; 2016 Nov; 8(43):18412-18420. PubMed ID: 27774560 [TBL] [Abstract][Full Text] [Related]
6. Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance. Jafta CJ; Mathe MK; Manyala N; Roos WD; Ozoemena KI ACS Appl Mater Interfaces; 2013 Aug; 5(15):7592-8. PubMed ID: 23855720 [TBL] [Abstract][Full Text] [Related]
7. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793 [TBL] [Abstract][Full Text] [Related]
8. Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries. Chong J; Xun S; Zhang J; Song X; Xie H; Battaglia V; Wang R Chemistry; 2014 Jun; 20(24):7479-85. PubMed ID: 24782138 [TBL] [Abstract][Full Text] [Related]
9. A facile and generic method to improve cathode materials for lithium-ion batteries via utilizing nanoscale surface amorphous films of self-regulating thickness. Huang J; Luo J Phys Chem Chem Phys; 2014 May; 16(17):7786-98. PubMed ID: 24643317 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the Ion Transport in LiMn Huang J; Liu H; Zhou N; An K; Meng YS; Luo J ACS Appl Mater Interfaces; 2017 Oct; 9(42):36745-36754. PubMed ID: 28972731 [TBL] [Abstract][Full Text] [Related]
11. Ab Initio Study of Sodium Insertion in the λ-Mn Vasileiadis A; Carlsen B; de Klerk NJJ; Wagemaker M Chem Mater; 2018 Oct; 30(19):6646-6659. PubMed ID: 30344371 [TBL] [Abstract][Full Text] [Related]
12. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316 [TBL] [Abstract][Full Text] [Related]
13. Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. Erickson EM; Li W; Dolocan A; Manthiram A ACS Appl Mater Interfaces; 2020 Apr; 12(14):16451-16461. PubMed ID: 32181643 [TBL] [Abstract][Full Text] [Related]
14. Origin of Enhanced Cyclability in Covalently Modified LiMn Madsen KE; Wade KA; Haasch RT; Buchholz DB; Bassett KL; Nicolau BG; Gewirth AA ACS Appl Mater Interfaces; 2019 Oct; 11(43):39890-39901. PubMed ID: 31577115 [TBL] [Abstract][Full Text] [Related]
15. Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Markevich E; Salitra G; Fridman K; Sharabi R; Gershinsky G; Garsuch A; Semrau G; Schmidt MA; Aurbach D Langmuir; 2014 Jul; 30(25):7414-24. PubMed ID: 24885475 [TBL] [Abstract][Full Text] [Related]
16. Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. Cho HM; Chen MV; MacRae AC; Meng YS ACS Appl Mater Interfaces; 2015 Aug; 7(30):16231-9. PubMed ID: 26172214 [TBL] [Abstract][Full Text] [Related]
17. Challenges and approaches for high-voltage spinel lithium-ion batteries. Kim JH; Pieczonka NP; Yang L Chemphyschem; 2014 Jul; 15(10):1940-54. PubMed ID: 24862008 [TBL] [Abstract][Full Text] [Related]
18. Improved electrochemical performance of spinel LiMn(1.5)Ni(0.5)O4 through MgF2 nano-coating. Wu Q; Zhang X; Sun S; Wan N; Pan D; Bai Y; Zhu H; Hu YS; Dai S Nanoscale; 2015 Oct; 7(38):15609-17. PubMed ID: 26204097 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Li storage performance of LiNi(0.5)Mn(1.5)O(4)-coated 0.4Li(2)MnO(3)·0.6LiNi(1/3)Co(1/3)Mn(1/3)O(2) cathode materials for li-ion batteries. Chen Y; Xie K; Zheng C; Ma Z; Chen Z ACS Appl Mater Interfaces; 2014 Oct; 6(19):16888-94. PubMed ID: 25225881 [TBL] [Abstract][Full Text] [Related]
20. Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries. Liu C; Wang Z; Shi C; Liu E; He C; Zhao N ACS Appl Mater Interfaces; 2014 Jun; 6(11):8363-8. PubMed ID: 24828946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]