These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 26393622)
1. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Gügi B; Le Costaouec T; Burel C; Lerouge P; Helbert W; Bardor M Mar Drugs; 2015 Sep; 13(9):5993-6018. PubMed ID: 26393622 [TBL] [Abstract][Full Text] [Related]
2. Identification of N-glycan oligomannoside isomers in the diatom Phaeodactylum tricornutum. Dumontier R; Loutelier-Bourhis C; Walet-Balieu ML; Burel C; Mareck A; Afonso C; Lerouge P; Bardor M Carbohydr Polym; 2021 May; 259():117660. PubMed ID: 33673983 [TBL] [Abstract][Full Text] [Related]
3. Marine polysaccharide networks and diatoms at the nanometric scale. Svetličić V; Zutić V; Pletikapić G; Radić TM Int J Mol Sci; 2013 Oct; 14(10):20064-78. PubMed ID: 24113585 [TBL] [Abstract][Full Text] [Related]
4. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. Fabris M; Matthijs M; Carbonelle S; Moses T; Pollier J; Dasseville R; Baart GJE; Vyverman W; Goossens A New Phytol; 2014 Nov; 204(3):521-535. PubMed ID: 24996048 [TBL] [Abstract][Full Text] [Related]
5. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335 [TBL] [Abstract][Full Text] [Related]
6. Investigating mixotrophic metabolism in the model diatom Villanova V; Fortunato AE; Singh D; Bo DD; Conte M; Obata T; Jouhet J; Fernie AR; Marechal E; Falciatore A; Pagliardini J; Le Monnier A; Poolman M; Curien G; Petroutsos D; Finazzi G Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717014 [TBL] [Abstract][Full Text] [Related]
7. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. Peng KT; Zheng CN; Xue J; Chen XY; Yang WD; Liu JS; Bai W; Li HY J Agric Food Chem; 2014 Sep; 62(35):8773-6. PubMed ID: 25109502 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the Spermidine Synthase-Based Polyamine Biosynthetic Pathway to Boost Rapid Growth in Marine Diatom Lin HY; Liu CH; Kang YT; Lin SW; Liu HY; Lee CT; Liu YC; Hsu MC; Chien YY; Hong SM; Cheng YH; Hsieh BY; Lin HJ Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540790 [TBL] [Abstract][Full Text] [Related]
9. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation. Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027 [TBL] [Abstract][Full Text] [Related]
10. Endoplasmic reticulum-quality control pathway and endoplasmic reticulum-associated degradation mechanism regulate the N-glycoproteins and N-glycan structures in the diatom Phaeodactylum tricornutum. Chen J; Du H; Liu Z; Li T; Du H; Wang W; Aslam M; Chen W; Li P; Luo H; Fang H; Liu X Microb Cell Fact; 2022 Oct; 21(1):219. PubMed ID: 36266689 [TBL] [Abstract][Full Text] [Related]
12. Specific acclimations to phosphorus limitation in the marine diatom Phaeodactylum tricornutum. Dell'Aquila G; Maier UG Biol Chem; 2020 Nov; 401(12):1495-1501. PubMed ID: 32845857 [TBL] [Abstract][Full Text] [Related]
13. Modelling metabolism of the diatom Phaeodactylum tricornutum. Singh D; Carlson R; Fell D; Poolman M Biochem Soc Trans; 2015 Dec; 43(6):1182-6. PubMed ID: 26614658 [TBL] [Abstract][Full Text] [Related]
14. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms. Shao Z; Thomas Y; Hembach L; Xing X; Duan D; Moerschbacher BM; Bulone V; Tirichine L; Bowler C New Phytol; 2019 Mar; 221(4):1890-1905. PubMed ID: 30288745 [TBL] [Abstract][Full Text] [Related]
15. Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Xie X; Yang J; Du H; Chen J; Sanganyado E; Gong Y; Du H; Chen W; Liu Z; Liu X Microb Cell Fact; 2023 Jan; 22(1):6. PubMed ID: 36611199 [TBL] [Abstract][Full Text] [Related]
16. Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. Lai HL; Yang LC; Lin PT; Lai SY; Wang MY Int J Biol Macromol; 2020 Jul; 155():951-960. PubMed ID: 31712151 [TBL] [Abstract][Full Text] [Related]
17. Growth and physiological responses of a marine diatom (Phaeodactylum tricornutum) against two imidazolium-based ionic liquids ([C Deng XY; Chen B; Li D; Hu XL; Cheng J; Gao K; Wang CH Aquat Toxicol; 2017 Aug; 189():115-122. PubMed ID: 28618302 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic Pigments in Diatoms. Kuczynska P; Jemiola-Rzeminska M; Strzalka K Mar Drugs; 2015 Sep; 13(9):5847-81. PubMed ID: 26389924 [TBL] [Abstract][Full Text] [Related]
19. Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). Jaramillo-Madrid AC; Ashworth J; Fabris M; Ralph PJ Phytochemistry; 2019 Jul; 163():46-57. PubMed ID: 31005802 [TBL] [Abstract][Full Text] [Related]
20. Mobilization of a diatom mutator-like element (MULE) transposon inactivates the uridine monophosphate synthase (UMPS) locus in Phaeodactylum tricornutum. Abbriano RM; George J; Kahlke T; Commault AS; Fabris M Plant J; 2023 Aug; 115(4):926-936. PubMed ID: 37147901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]