These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26393890)

  • 21. Functional analysis of information rates conveyed by rat whisker-related trigeminal nuclei neurons.
    Laturnus S; Hoffmann A; Chakrabarti S; Schwarz C
    J Neurophysiol; 2021 Apr; 125(4):1517-1531. PubMed ID: 33689491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking.
    Sachdev RN; Berg RW; Champney G; Kleinfeld D; Ebner FF
    Somatosens Mot Res; 2003; 20(2):163-9. PubMed ID: 12850826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway.
    Ahissar E; Sosnik R; Haidarliu S
    Nature; 2000 Jul; 406(6793):302-6. PubMed ID: 10917531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system.
    Nicolelis MA; Baccala LA; Lin RC; Chapin JK
    Science; 1995 Jun; 268(5215):1353-8. PubMed ID: 7761855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.
    Andermann ML; Moore CI
    Brain Res; 2008 Oct; 1235():74-81. PubMed ID: 18625209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corticofugal control of vibrissa-sensitive neurons in the interpolaris nucleus of the trigeminal complex.
    Furuta T; Urbain N; Kaneko T; DeschĂȘnes M
    J Neurosci; 2010 Feb; 30(5):1832-8. PubMed ID: 20130192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis.
    Kwan CL; Demaro JA; Hu JW; Jacquin MF; Sessle BJ
    J Neurophysiol; 1999 Feb; 81(2):435-46. PubMed ID: 10036296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents.
    Jacquin MF; Renehan WE; Mooney RD; Rhoades RW
    J Neurophysiol; 1986 Jun; 55(6):1153-86. PubMed ID: 3734853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus.
    Masri R; Bezdudnaya T; Trageser JC; Keller A
    J Neurophysiol; 2008 Aug; 100(2):681-9. PubMed ID: 18234976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of neuropeptide Y type 2 receptor activation on responses of rat ventral posteromedial thalamus neurons to surround vibrissae and trigeminal subnucleus interpolaris stimulation.
    Chiaia NL; Zhang Y; Chen M; Zhang S; Rhoades RW
    Somatosens Mot Res; 1997; 14(4):295-300. PubMed ID: 9443369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle.
    Whiteley SJ; Knutsen PM; Matthews DW; Kleinfeld D
    J Neurophysiol; 2015 Jul; 114(1):138-45. PubMed ID: 25855692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus.
    Sosnik R; Haidarliu S; Ahissar E
    J Neurophysiol; 2001 Jul; 86(1):339-53. PubMed ID: 11431515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception.
    Mameli O; Stanzani S; Mulliri G; Pellitteri R; Caria MA; Russo A; De Riu P
    Behav Brain Funct; 2010 Nov; 6():69. PubMed ID: 21078134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatosensory nuclei of the manatee brainstem and thalamus.
    Sarko DK; Johnson JI; Switzer RC; Welker WI; Reep RL
    Anat Rec (Hoboken); 2007 Sep; 290(9):1138-65. PubMed ID: 17722080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positive feedback in a brainstem tactile sensorimotor loop.
    Nguyen QT; Kleinfeld D
    Neuron; 2005 Feb; 45(3):447-57. PubMed ID: 15694330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposite adaptive processing of stimulus intensity in two major nuclei of the somatosensory brainstem.
    Mohar B; Katz Y; Lampl I
    J Neurosci; 2013 Sep; 33(39):15394-400. PubMed ID: 24068807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coding of whisker motion across the mouse face.
    Severson KS; Xu D; Yang H; O'Connor DH
    Elife; 2019 Feb; 8():. PubMed ID: 30816844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tactile signals transmitted by the vibrissa during active whisking behavior.
    Huet LA; Schroeder CL; Hartmann MJ
    J Neurophysiol; 2015 Jun; 113(10):3511-8. PubMed ID: 25867739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.