These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26393900)

  • 61. Mechanisms and pathophysiology of the low-level blast brain injury in animal models.
    Säljö A; Mayorga M; Bolouri H; Svensson B; Hamberger A
    Neuroimage; 2011 Jan; 54 Suppl 1():S83-8. PubMed ID: 20580846
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma.
    Park E; Eisen R; Kinio A; Baker AJ
    Neurobiol Dis; 2013 Apr; 52():150-9. PubMed ID: 23238347
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Distribution of blood-brain barrier disruption in primary blast injury.
    Yeoh S; Bell ED; Monson KL
    Ann Biomed Eng; 2013 Oct; 41(10):2206-14. PubMed ID: 23568152
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transcriptional Changes in the Mouse Retina after Ocular Blast Injury: A Role for the Immune System.
    Struebing FL; King R; Li Y; Chrenek MA; Lyuboslavsky PN; Sidhu CS; Iuvone PM; Geisert EE
    J Neurotrauma; 2018 Jan; 35(1):118-129. PubMed ID: 28599600
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Intracranial venous injury, thrombosis and repair as hallmarks of mild blast traumatic brain injury in rats: Lessons from histological and immunohistochemical studies of decalcified sectioned heads and correlative microarray analysis.
    Balaban C; Jackson RL; Liu J; Gao W; Hoffer ME
    J Neurosci Methods; 2016 Oct; 272():56-68. PubMed ID: 26861907
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hemoconcentration caused by microvascular dysfunction after blast injuries to the chest and abdomen of rabbits.
    Zhang B; Wang A; Hu W; Zhang L; Xiong Y; Chen J; Wang J
    J Trauma; 2011 Sep; 71(3):694-701. PubMed ID: 21909001
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures.
    Zander NE; Piehler T; Banton R; Benjamin R
    J Neurosci Res; 2016 Sep; 94(9):827-36. PubMed ID: 27317559
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Repeat low-level blast exposure increases transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1) expression in the trigeminal ganglion.
    Por ED; Sandoval ML; Thomas-Benson C; Burke TA; Doyle Brackley A; Jeske NA; Cleland JM; Lund BJ
    PLoS One; 2017; 12(8):e0182102. PubMed ID: 28797041
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Drosophila melanogaster larvae as a model for blast lung injury.
    Bass CR; Meyerhoff KP; Damon AM; Bellizzi AM; Salzar RS; Rafaels KA
    J Trauma; 2010 Jul; 69(1):179-84. PubMed ID: 20173659
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pulmonary microvascular dysfunction and pathological changes induced by blast injury in a rabbit model.
    Wu SY; Han GF; Kang JY; Zhang LC; Wang AM; Wang JM
    Ulus Travma Acil Cerrahi Derg; 2016 Sep; 22(5):405-411. PubMed ID: 27849332
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ocular injuries in blast victims.
    Alam M; Iqbal M; Khan A; Khan SA
    J Pak Med Assoc; 2012 Feb; 62(2):138-42. PubMed ID: 22755375
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cellular Mechanisms and Behavioral Outcomes in Blast-Induced Neurotrauma: Comparing Experimental Setups.
    Bailey ZS; Hubbard WB; VandeVord PJ
    Methods Mol Biol; 2016; 1462():119-38. PubMed ID: 27604716
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ocular consequences of bottle rocket injuries in children and adolescents.
    Khan M; Reichstein D; M Recchia F
    Arch Ophthalmol; 2011 May; 129(5):639-42. PubMed ID: 21220620
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A model of low-level primary blast brain trauma results in cytoskeletal proteolysis and chronic functional impairment in the absence of lung barotrauma.
    Park E; Gottlieb JJ; Cheung B; Shek PN; Baker AJ
    J Neurotrauma; 2011 Mar; 28(3):343-57. PubMed ID: 21142686
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of serial bio-shock tubes and their application.
    Wang Z; Sun L; Yang Z; Leng H; Jiang J; Yu H; Gu J; Li Z
    Chin Med J (Engl); 1998 Feb; 111(2):109-13. PubMed ID: 10374367
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Shock tubes and blast injury modeling.
    Ning YL; Zhou YG
    Chin J Traumatol; 2015; 18(4):187-93. PubMed ID: 26764538
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modelling human eye under blast loading.
    Esposito L; Clemente C; Bonora N; Rossi T
    Comput Methods Biomech Biomed Engin; 2015; 18(2):107-15. PubMed ID: 23521031
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.
    Sundaramurthy A; Chandra N
    Front Neurol; 2014; 5():253. PubMed ID: 25520701
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures.
    Kumar R; Nedungadi A
    Front Neurol; 2020; 11():90. PubMed ID: 32153491
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Local plasma-penicillin therapy in ocular blast injuries.
    CZEMERYS E
    J Mil Med Pac; 1946 Jan; 2():65. PubMed ID: 21016716
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.