BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26394009)

  • 1. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories.
    Sun CL; Thomas BC; Barrangou R; Banfield JF
    ISME J; 2016 Apr; 10(4):858-70. PubMed ID: 26394009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
    Shmakov SA; Sitnik V; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas: Spacer Diversity Determines the Efficiency of Defense.
    Lopatina A; Sorek R
    Curr Biol; 2016 Jul; 26(14):R683-5. PubMed ID: 27458917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global transcription of CRISPR loci in the human oral cavity.
    Lum AG; Ly M; Santiago-Rodriguez TM; Naidu M; Boehm TK; Pride DT
    BMC Genomics; 2015 May; 16(1):401. PubMed ID: 25994215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs.
    Gogleva AA; Gelfand MS; Artamonova II
    BMC Genomics; 2014 Mar; 15(1):202. PubMed ID: 24628983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation.
    Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.
    Hargreaves KR; Flores CO; Lawley TD; Clokie MR
    mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes.
    Nasko DJ; Ferrell BD; Moore RM; Bhavsar JD; Polson SW; Wommack KE
    mBio; 2019 Mar; 10(2):. PubMed ID: 30837341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus.
    Hu T; Cui Y; Qu X
    Arch Microbiol; 2020 May; 202(4):695-710. PubMed ID: 31781808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host diversity limits the evolution of parasite local adaptation.
    Morley D; Broniewski JM; Westra ER; Buckling A; van Houte S
    Mol Ecol; 2017 Apr; 26(7):1756-1763. PubMed ID: 27862566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes.
    Mick E; Stern A; Sorek R
    RNA Biol; 2013 May; 10(5):900-6. PubMed ID: 23439321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How adaptive immunity constrains the composition and fate of large bacterial populations.
    Bonsma-Fisher M; Soutière D; Goyal S
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7462-E7468. PubMed ID: 30038015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Human Virome Using CRISPR Spacers from Microbiomes.
    Hidalgo-Cantabrana C; Sanozky-Dawes R; Barrangou R
    Viruses; 2018 Sep; 10(9):. PubMed ID: 30205462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost and benefits of clustered regularly interspaced short palindromic repeats spacer acquisition.
    Bradde S; Mora T; Walczak AM
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180095. PubMed ID: 30905281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.
    McGinn J; Marraffini LA
    Mol Cell; 2016 Nov; 64(3):616-623. PubMed ID: 27618488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.