These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26394759)

  • 1. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.
    Chu W; Li X; Gao N; Deng Y; Yin D; Li D; Chu T
    Sci Rep; 2015 Sep; 5():14412. PubMed ID: 26394759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination.
    Chu WH; Gao NY; Deng Y; Krasner SW
    Environ Sci Technol; 2010 May; 44(10):3908-12. PubMed ID: 20397690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of haloacetonitriles and haloacetamides and their precursors during chlorination of secondary effluents.
    Huang H; Wu QY; Tang X; Jiang R; Hu HY
    Chemosphere; 2016 Feb; 144():297-303. PubMed ID: 26364220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of metformin and drinking water quality variation on haloacetamide formation during chlor(am)ination of acetaminophen.
    Ho MC; Yang RY; Chen GF; Chen WH
    J Environ Manage; 2023 Jun; 335():117603. PubMed ID: 36893720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters, model organic matters, and wastewater effluents.
    Huang H; Wu QY; Hu HY; Mitch WA
    Environ Sci Technol; 2012 Oct; 46(19):10624-31. PubMed ID: 22950789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of haloacetonitriles and haloacetamides during chlorination of pure culture bacteria.
    Huang H; Wu QY; Tang X; Jiang R; Hu HY
    Chemosphere; 2013 Jul; 92(4):375-81. PubMed ID: 23402924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter.
    Le Roux J; Nihemaiti M; Croué JP
    Water Res; 2016 Jan; 88():371-379. PubMed ID: 26517788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan.
    Kosaka K; Ohkubo K; Akiba M
    Water Res; 2016 Dec; 106():470-476. PubMed ID: 27770723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water.
    Yang F; Zhang J; Chu W; Yin D; Templeton MR
    J Hazard Mater; 2014 Jun; 274():156-63. PubMed ID: 24780857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination.
    Huang H; Chen BY; Zhu ZR
    Chemosphere; 2017 Jan; 166():126-134. PubMed ID: 27693873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ideal model for determination the formation potential of priority DBPs during chlorination of free amino acids.
    Li J; Chen J; Li J
    Chemosphere; 2024 Jul; 359():142306. PubMed ID: 38734255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.
    Chu W; Li X; Bond T; Gao N; Bin X; Wang Q; Ding S
    Water Res; 2016 Dec; 107():141-150. PubMed ID: 27837731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursors of nitrogenous disinfection by-products in drinking water--a critical review and analysis.
    Bond T; Templeton MR; Graham N
    J Hazard Mater; 2012 Oct; 235-236():1-16. PubMed ID: 22846217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids.
    Li G; Tian C; Karanfil T; Liu C
    Chemosphere; 2024 Feb; 349():140985. PubMed ID: 38104740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination.
    Chu W; Gao N; Yin D; Krasner SW; Mitch WA
    Environ Sci Technol; 2014 Oct; 48(20):12190-8. PubMed ID: 25251305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microseira wollei and Phormidium algae more than doubles DBP concentrations and calculated toxicity in drinking water.
    Aziz MT; Granger CO; Westerman DC; Putnam SP; Ferry JL; Richardson SD
    Water Res; 2022 Jun; 216():118316. PubMed ID: 35367941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.
    Bond T; Templeton MR; Rifai O; Ali H; Graham NJ
    Chemosphere; 2014 Sep; 111():218-24. PubMed ID: 24997921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.