These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26394761)
1. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells. Ho Yeon D; Chandra Mohanty B; Lee SM; Soo Cho Y Sci Rep; 2015 Sep; 5():14353. PubMed ID: 26394761 [TBL] [Abstract][Full Text] [Related]
2. High-Efficiency Double Absorber PbS/CdS Heterojunction Solar Cells by Enhanced Charge Collection Using a ZnO Nanorod Array. Yeon DH; Mohanty BC; Lee CY; Lee SM; Cho YS ACS Omega; 2017 Aug; 2(8):4894-4899. PubMed ID: 31457768 [TBL] [Abstract][Full Text] [Related]
3. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells. Lee SM; Yeon DH; Mohanty BC; Cho YS ACS Appl Mater Interfaces; 2015 Mar; 7(8):4573-8. PubMed ID: 25664648 [TBL] [Abstract][Full Text] [Related]
4. The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions. Manis-Levy H; Abutbul RE; Grosman A; Peled H; Golan Y; Ashkenasy N; Sa'Ar A; Shikler R; Sarusi G Nanotechnology; 2020 Apr; 31(25):255502. PubMed ID: 32160600 [TBL] [Abstract][Full Text] [Related]
5. PbS Quantum-Dot Depleted Heterojunction Solar Cells Employing CdS Nanorod Arrays as the Electron Acceptor with Enhanced Efficiency. Yao X; Liu S; Chang Y; Li G; Mi L; Wang X; Jiang Y ACS Appl Mater Interfaces; 2015 Oct; 7(41):23117-23. PubMed ID: 26418344 [TBL] [Abstract][Full Text] [Related]
6. Efficiency Enhancement of Cu(In,Ga)(S,Se) Cheng TM; Cai CH; Huang WC; Xu WL; Tu LH; Lai CH ACS Appl Mater Interfaces; 2020 Apr; 12(15):18157-18164. PubMed ID: 32207291 [TBL] [Abstract][Full Text] [Related]
7. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells. Tan F; Wang Z; Qu S; Cao D; Liu K; Jiang Q; Yang Y; Pang S; Zhang W; Lei Y; Wang Z Nanoscale; 2016 May; 8(19):10198-204. PubMed ID: 27124650 [TBL] [Abstract][Full Text] [Related]
8. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
9. Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Chang LY; Lunt RR; Brown PR; Bulović V; Bawendi MG Nano Lett; 2013 Mar; 13(3):994-9. PubMed ID: 23406331 [TBL] [Abstract][Full Text] [Related]
10. High-Efficiency Cu(In,Ga)Se₂ Thin Film Solar Cells Using ZnS and CdS Buffer Layers. Jun BM; Kim G; Kim E; Kim H; Lee DJ; Kim HS; Choi SG; Shan F; Kim SJ J Nanosci Nanotechnol; 2019 Mar; 19(3):1814-1819. PubMed ID: 30469273 [TBL] [Abstract][Full Text] [Related]
11. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
12. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
13. Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition. Tosun BS; Pettit C; Campbell SA; Aydil ES ACS Appl Mater Interfaces; 2012 Jul; 4(7):3676-84. PubMed ID: 22732000 [TBL] [Abstract][Full Text] [Related]
14. Light-soaking effects and capacitance profiling in Cu(In,Ga)Se Yu HJ; Lee WJ; Wi JH; Cho DH; Han WS; Chung YD; Kim TS; Song JH Phys Chem Chem Phys; 2016 Dec; 18(48):33211-33217. PubMed ID: 27892577 [TBL] [Abstract][Full Text] [Related]
15. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics. Mokurala K; Baranowski LL; de Souza Lucas FW; Siol S; van Hest MF; Mallick S; Bhargava P; Zakutayev A ACS Comb Sci; 2016 Sep; 18(9):583-9. PubMed ID: 27479495 [TBL] [Abstract][Full Text] [Related]
16. Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics. Labelle AJ; Thon SM; Kim JY; Lan X; Zhitomirsky D; Kemp KW; Sargent EH ACS Nano; 2015 May; 9(5):5447-53. PubMed ID: 25880708 [TBL] [Abstract][Full Text] [Related]
17. Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion. Wu H; Yang Y; Oh E; Lai F; Yu D Nanotechnology; 2012 Jul; 23(26):265602. PubMed ID: 22699324 [TBL] [Abstract][Full Text] [Related]
18. High Quality CdS Thin Film Growth by Avoiding Anomalies in Chemical Bath Deposition for Large Area Thin Film Solar Cell Application. Yusoff Y; Chelvanathan P; Huda Q; Akhtaruzzaman M; Alam MM; Al-Othman ZA; Amin N J Nanosci Nanotechnol; 2015 Nov; 15(11):9240-5. PubMed ID: 26726675 [TBL] [Abstract][Full Text] [Related]
19. Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) Kim DS; Park GS; Kim B; Bae S; Park SY; Oh HS; Lee U; Ko DH; Kim J; Min BK ACS Appl Mater Interfaces; 2021 Mar; 13(11):13289-13300. PubMed ID: 33689281 [TBL] [Abstract][Full Text] [Related]
20. Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer. Ren H; Xu A; Pan Y; Qin D; Hou L; Wang D Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]