These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26395144)

  • 1. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.
    Kirwan P; Turner-Bridger B; Peter M; Momoh A; Arambepola D; Robinson HP; Livesey FJ
    Development; 2015 Sep; 142(18):3178-87. PubMed ID: 26395144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures.
    Hyvärinen T; Hyysalo A; Kapucu FE; Aarnos L; Vinogradov A; Eglen SJ; Ylä-Outinen L; Narkilahti S
    Sci Rep; 2019 Nov; 9(1):17125. PubMed ID: 31748598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks.
    Shi Y; Kirwan P; Livesey FJ
    Nat Protoc; 2012 Oct; 7(10):1836-46. PubMed ID: 22976355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses.
    Shi Y; Kirwan P; Smith J; Robinson HP; Livesey FJ
    Nat Neurosci; 2012 Feb; 15(3):477-86, S1. PubMed ID: 22306606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks.
    Gazina EV; Morrisroe E; Mendis GDC; Michalska AE; Chen J; Nefzger CM; Rollo BN; Reid CA; Pera MF; Petrou S
    J Neurosci Methods; 2018 Jan; 293():53-58. PubMed ID: 28827162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro.
    Opitz T; De Lima AD; Voigt T
    J Neurophysiol; 2002 Nov; 88(5):2196-206. PubMed ID: 12424261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical network from human embryonic stem cells.
    Nat R
    J Cell Mol Med; 2011 Jun; 15(6):1429-31. PubMed ID: 21418521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Bidirectional Reorganization of Cortical Microcircuits.
    Albieri G; Barnes SJ; de Celis Alonso B; Cheetham CE; Edwards CE; Lowe AS; Karunaratne H; Dear JP; Lee KC; Finnerty GT
    Cereb Cortex; 2015 Sep; 25(9):3025-35. PubMed ID: 24836895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development.
    Iglesias J; Villa AE
    Int J Neural Syst; 2008 Aug; 18(4):267-77. PubMed ID: 18763727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morpholess neurons compromise the development of cortical connectivity.
    Gafarov F; Khusnutdinov N; Galimyanov F
    J Integr Neurosci; 2009 Mar; 8(1):35-48. PubMed ID: 19412979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory experience alters cortical connectivity and synaptic function site specifically.
    Cheetham CE; Hammond MS; Edwards CE; Finnerty GT
    J Neurosci; 2007 Mar; 27(13):3456-65. PubMed ID: 17392462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity and specificity of cortical processing networks.
    Majewska AK; Sur M
    Trends Neurosci; 2006 Jun; 29(6):323-9. PubMed ID: 16697057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.
    Iida S; Shimba K; Sakai K; Kotani K; Jimbo Y
    Biochem Biophys Res Commun; 2018 Jun; 501(1):152-157. PubMed ID: 29723524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of mGluR5 in synaptic function and plasticity of the mouse thalamocortical pathway.
    She WC; Quairiaux C; Albright MJ; Wang YC; Sanchez DE; Chang PS; Welker E; Lu HC
    Eur J Neurosci; 2009 Apr; 29(7):1379-96. PubMed ID: 19519626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches.
    Bottjer SW
    J Neurophysiol; 2005 Dec; 94(6):3698-707. PubMed ID: 16107531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
    Voigt T; Opitz T; de Lima AD
    J Neurosci; 2001 Nov; 21(22):8895-905. PubMed ID: 11698601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex.
    Hellwig B
    Biol Cybern; 2000 Feb; 82(2):111-21. PubMed ID: 10664098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological consequences of selective suppression of synaptic transmission in developing cerebral cortical networks in vitro: differential effects on intrinsically generated bioelectric discharges in a living 'model' system for slow-wave sleep activity.
    Corner MA; Baker RE; van Pelt J
    Neurosci Biobehav Rev; 2008 Oct; 32(8):1569-600. PubMed ID: 18722467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo.
    Espuny-Camacho I; Michelsen KA; Gall D; Linaro D; Hasche A; Bonnefont J; Bali C; Orduz D; Bilheu A; Herpoel A; Lambert N; Gaspard N; Péron S; Schiffmann SN; Giugliano M; Gaillard A; Vanderhaeghen P
    Neuron; 2013 Feb; 77(3):440-56. PubMed ID: 23395372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.