BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26395245)

  • 21. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.
    Zhao Y; Sun L; Xi M; Feng Q; Jiang C; Fong H
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5759-67. PubMed ID: 24689890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Ag synchronously deposited and doped TiO
    Yang L; Sang Q; Du J; Yang M; Li X; Shen Y; Han X; Jiang X; Zhao B
    Phys Chem Chem Phys; 2018 Jun; 20(22):15149-15157. PubMed ID: 29789850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aramid nanofiber membrane decorated with monodispersed silver nanoparticles as robust and flexible SERS chips for trace detection of multiple toxic substances.
    Zhang S; Jin K; Xu J; Ding L; Huang Y; Liu G; Liu X; Jiang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123720. PubMed ID: 38091650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces.
    Yan J; Han X; He J; Kang L; Zhang B; Du Y; Zhao H; Dong C; Wang HL; Xu P
    ACS Appl Mater Interfaces; 2012 May; 4(5):2752-6. PubMed ID: 22548473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile One-Step Deposition of Ag Nanoparticles on SiO
    Wan M; Zhao H; Peng L; Zhao Y; Sun L
    ACS Appl Bio Mater; 2021 Aug; 4(8):6549-6557. PubMed ID: 35006892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable Ag@oxides nanoplates for surface-enhanced Raman spectroscopy of amino acids.
    Du P; Ma L; Cao Y; Li D; Liu Z; Wang Z; Sun Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8853-8. PubMed ID: 24837067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trace detection of cyanide based on SERS effect of Ag nanoplate-built hollow microsphere arrays.
    Liu G; Cai W; Kong L; Duan G; Li Y; Wang J; Cheng Z
    J Hazard Mater; 2013 Mar; 248-249():435-41. PubMed ID: 23416488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun flexible poly(bisphenol A carbonate) nanofibers decorated with Ag nanoparticles as effective 3D SERS substrates for trace TNT detection.
    Li Y; Lu R; Shen J; Han W; Sun X; Li J; Wang L
    Analyst; 2017 Dec; 142(24):4756-4764. PubMed ID: 29168853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites.
    Lin TW; Wu HY; Tasi TT; Lai YH; Shen HH
    Phys Chem Chem Phys; 2015 Jul; 17(28):18443-8. PubMed ID: 26106968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous Redox-Reaction-Driven Growth of Ag Nanoparticles on Co(OH)
    Fan T; Cai L; Huang Z; Tang H; Zhang L; Li Z
    Inorg Chem; 2023 Jul; 62(30):11775-11784. PubMed ID: 37463408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications.
    Yang S; Slotcavage D; Mai JD; Guo F; Li S; Zhao Y; Lei Y; Cameron CE; Huang TJ
    J Mater Chem C Mater; 2014 Oct; 2(39):8350-8356. PubMed ID: 25383191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.
    Tan EZ; Yin PG; You TT; Wang H; Guo L
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3432-7. PubMed ID: 22708788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ag-decorated TiO₂ nanograss for 3D SERS-active substrate with visible light self-cleaning and reactivation.
    Xu SC; Zhang YX; Luo YY; Wang S; Ding HL; Xu JM; Li GH
    Analyst; 2013 Aug; 138(16):4519-25. PubMed ID: 23774192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf.
    Huang JA; Zhang YL; Zhao Y; Zhang XL; Sun ML; Zhang W
    Nanoscale; 2016 Jun; 8(22):11487-93. PubMed ID: 27199255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AgTNP@TiO
    Cheng H; Luo K; Wen X; Yang J; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123562. PubMed ID: 37918094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.