BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26395346)

  • 1. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip.
    Hiyama S; Moritani Y; Gojo R; Takeuchi S; Sutoh K
    Lab Chip; 2010 Oct; 10(20):2741-8. PubMed ID: 20714497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Liposome Synthesis by High Aspect Ratio Microfluidic Flow Focusing.
    Han JY; Chen Z; Devoe DL
    Methods Mol Biol; 2023; 2622():87-93. PubMed ID: 36781752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable preparation of poly(ethylene glycol)-grafted siRNA-loaded lipid nanoparticles using a commercially available fluidic device and tangential flow filtration.
    Sakurai Y; Hada T; Harashima H
    J Biomater Sci Polym Ed; 2017; 28(10-12):1086-1096. PubMed ID: 28157422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step Production of Sterically Stabilized Anionic Nanoliposome Using Microfluidic Device.
    da Costa OMMM; Firmino PCOS; Strapasson GB; de la Torre LG; Malfatti-Gasperini AA; Júnior SA
    J Oleo Sci; 2022 Apr; 71(4):515-522. PubMed ID: 35283419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation.
    Akar S; Fardindoost S; Hoorfar M
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions.
    Morita M; Onoe H; Yanagisawa M; Ito H; Ichikawa M; Fujiwara K; Saito H; Takinoue M
    Chembiochem; 2015 Sep; 16(14):2029-35. PubMed ID: 26212462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array.
    Hood RR; DeVoe DL; Atencia J; Vreeland WN; Omiatek DM
    Lab Chip; 2014 Jul; 14(14):2403-9. PubMed ID: 24825622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug.
    Kastner E; Verma V; Lowry D; Perrie Y
    Int J Pharm; 2015 May; 485(1-2):122-30. PubMed ID: 25725309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms.
    Andar AU; Hood RR; Vreeland WN; Devoe DL; Swaan PW
    Pharm Res; 2014 Feb; 31(2):401-13. PubMed ID: 24092051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system.
    Dimov N; Kastner E; Hussain M; Perrie Y; Szita N
    Sci Rep; 2017 Sep; 7(1):12045. PubMed ID: 28935923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride.
    Yaghmur A; Ghazal A; Ghazal R; Dimaki M; Svendsen WE
    Phys Chem Chem Phys; 2019 Jun; 21(24):13005-13013. PubMed ID: 31165825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes.
    Han JY; La Fiandra JN; DeVoe DL
    Nat Commun; 2022 Nov; 13(1):6997. PubMed ID: 36384946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.