These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26395346)

  • 1. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip.
    Hiyama S; Moritani Y; Gojo R; Takeuchi S; Sutoh K
    Lab Chip; 2010 Oct; 10(20):2741-8. PubMed ID: 20714497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Liposome Synthesis by High Aspect Ratio Microfluidic Flow Focusing.
    Han JY; Chen Z; Devoe DL
    Methods Mol Biol; 2023; 2622():87-93. PubMed ID: 36781752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable preparation of poly(ethylene glycol)-grafted siRNA-loaded lipid nanoparticles using a commercially available fluidic device and tangential flow filtration.
    Sakurai Y; Hada T; Harashima H
    J Biomater Sci Polym Ed; 2017; 28(10-12):1086-1096. PubMed ID: 28157422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step Production of Sterically Stabilized Anionic Nanoliposome Using Microfluidic Device.
    da Costa OMMM; Firmino PCOS; Strapasson GB; de la Torre LG; Malfatti-Gasperini AA; Júnior SA
    J Oleo Sci; 2022 Apr; 71(4):515-522. PubMed ID: 35283419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation.
    Akar S; Fardindoost S; Hoorfar M
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions.
    Morita M; Onoe H; Yanagisawa M; Ito H; Ichikawa M; Fujiwara K; Saito H; Takinoue M
    Chembiochem; 2015 Sep; 16(14):2029-35. PubMed ID: 26212462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array.
    Hood RR; DeVoe DL; Atencia J; Vreeland WN; Omiatek DM
    Lab Chip; 2014 Jul; 14(14):2403-9. PubMed ID: 24825622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug.
    Kastner E; Verma V; Lowry D; Perrie Y
    Int J Pharm; 2015 May; 485(1-2):122-30. PubMed ID: 25725309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms.
    Andar AU; Hood RR; Vreeland WN; Devoe DL; Swaan PW
    Pharm Res; 2014 Feb; 31(2):401-13. PubMed ID: 24092051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system.
    Dimov N; Kastner E; Hussain M; Perrie Y; Szita N
    Sci Rep; 2017 Sep; 7(1):12045. PubMed ID: 28935923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride.
    Yaghmur A; Ghazal A; Ghazal R; Dimaki M; Svendsen WE
    Phys Chem Chem Phys; 2019 Jun; 21(24):13005-13013. PubMed ID: 31165825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes.
    Han JY; La Fiandra JN; DeVoe DL
    Nat Commun; 2022 Nov; 13(1):6997. PubMed ID: 36384946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.