These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 26395405)

  • 1. Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.
    Standish KA; Carland TM; Lockwood GK; Pfeiffer W; Tatineni M; Huang CC; Lamberth S; Cherkas Y; Brodmerkel C; Jaeger E; Smith L; Rajagopal G; Curran ME; Schork NJ
    BMC Bioinformatics; 2015 Sep; 16(1):304. PubMed ID: 26395405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercomputing for the parallelization of whole genome analysis.
    Puckelwartz MJ; Pesce LL; Nelakuditi V; Dellefave-Castillo L; Golbus JR; Day SM; Cappola TP; Dorn GW; Foster IT; McNally EM
    Bioinformatics; 2014 Jun; 30(11):1508-13. PubMed ID: 24526712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies.
    Liao P; Satten GA; Hu YJ
    Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid computational strategy to address WGS variant analysis in >5000 samples.
    Huang Z; Rustagi N; Veeraraghavan N; Carroll A; Gibbs R; Boerwinkle E; Venkata MG; Yu F
    BMC Bioinformatics; 2016 Sep; 17(1):361. PubMed ID: 27612449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.
    Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA;
    Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome.
    Ribeiro A; Golicz A; Hackett CA; Milne I; Stephen G; Marshall D; Flavell AJ; Bayer M
    BMC Bioinformatics; 2015 Nov; 16():382. PubMed ID: 26558718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient and tunable parameter to improve variant calling for whole genome and exome sequencing data.
    Ahn YJ; Markkandan K; Baek IP; Mun S; Lee W; Kim HS; Han K
    Genes Genomics; 2018 Jan; 40(1):39-47. PubMed ID: 29892897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADS-HCSpark: A scalable HaplotypeCaller leveraging adaptive data segmentation to accelerate variant calling on Spark.
    Xiao A; Wu Z; Dong S
    BMC Bioinformatics; 2019 Feb; 20(1):76. PubMed ID: 30764760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals.
    Cheng AY; Teo YY; Ong RT
    Bioinformatics; 2014 Jun; 30(12):1707-13. PubMed ID: 24558117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated genome sizing (IGS) approach for the parallelization of whole genome analysis.
    Sona P; Hong JH; Lee S; Kim BJ; Hong WY; Jung J; Kim HN; Kim HL; Christopher D; Herviou L; Im YH; Lee KY; Kim TS; Jung J
    BMC Bioinformatics; 2018 Dec; 19(1):462. PubMed ID: 30509173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow.
    Bathke J; Lühken G
    BMC Bioinformatics; 2021 Aug; 22(1):402. PubMed ID: 34388963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.
    Guo Y; Ding X; Shen Y; Lyon GJ; Wang K
    Sci Rep; 2015 Sep; 5():14283. PubMed ID: 26381817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing SNV identification in whole-genome sequencing data through the incorporation of known genetic variants into the minimap2 index.
    Guguchkin E; Kasianov A; Belenikin M; Zobkova G; Kosova E; Makeev V; Karpulevich E
    BMC Bioinformatics; 2024 Jul; 25(1):238. PubMed ID: 39003441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting.
    Wünsch C; Banck H; Müller-Tidow C; Dugas M
    BMC Med Genomics; 2020 Feb; 13(1):17. PubMed ID: 32019565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NGS for Sequence Variants.
    Teng S
    Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Wet-Lab to Variations: Concordance and Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing.
    Laurie S; Fernandez-Callejo M; Marco-Sola S; Trotta JR; Camps J; Chacón A; Espinosa A; Gut M; Gut I; Heath S; Beltran S
    Hum Mutat; 2016 Dec; 37(12):1263-1271. PubMed ID: 27604516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.