BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26395460)

  • 1. The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif.
    Davey L; Cohen A; LeBlanc J; Halperin SA; Lee SF
    Mol Microbiol; 2016 Jan; 99(2):236-53. PubMed ID: 26395460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Thiol-Disulfide Oxidoreductase (SdbA) Catalyzing Disulfide Bond Formation in the Superantigen SpeA in Streptococcus pyogenes.
    Lee SF; Li L; Jalal N; Halperin SA
    J Bacteriol; 2021 Aug; 203(17):e0015321. PubMed ID: 34152832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii.
    Davey L; Ng CKW; Halperin SA; Lee SF
    J Biol Chem; 2013 Jun; 288(23):16416-16429. PubMed ID: 23615907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii.
    Jalal NA; Davey L; Halperin SA; Lee SF
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30804044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of the Thiol-Disulfide Oxidoreductase SdbA Activates the CiaRH Two-Component System, Leading to Bacteriocin Expression Shutdown in Streptococcus gordonii.
    Davey L; Halperin SA; Lee SF
    J Bacteriol; 2016 Jan; 198(2):321-31. PubMed ID: 26527641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide Bonds: A Key Modification in Bacterial Extracytoplasmic Proteins.
    Lee SF; Davey L
    J Dent Res; 2017 Dec; 96(13):1465-1473. PubMed ID: 28797211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System.
    Davey L; Halperin SA; Lee SF
    PLoS One; 2016; 11(11):e0166656. PubMed ID: 27846284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis.
    Chim N; Harmston CA; Guzman DJ; Goulding CW
    BMC Struct Biol; 2013 Oct; 13():23. PubMed ID: 24134223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity and functions of CxxC-derived motifs.
    Fomenko DE; Gladyshev VN
    Biochemistry; 2003 Sep; 42(38):11214-25. PubMed ID: 14503871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analyses of alkylhydroperoxidase D from
    Meng Y; Sheen CR; Magon NJ; Hampton MB; Dobson RCJ
    J Biol Chem; 2020 Mar; 295(10):2984-2999. PubMed ID: 31974167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
    Ellis HR; Poole LB
    Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active-site properties of the oxidized and reduced C-terminal domain of DsbD obtained by NMR spectroscopy.
    Mavridou DA; Stevens JM; Ferguson SJ; Redfield C
    J Mol Biol; 2007 Jul; 370(4):643-58. PubMed ID: 17544440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The X-ray structure of the N-terminal domain of PILB from Neisseria meningitidis reveals a thioredoxin-fold.
    Ranaivoson FM; Kauffmann B; Neiers F; Wu J; Boschi-Muller S; Panjikar S; Aubry A; Branlant G; Favier F
    J Mol Biol; 2006 Apr; 358(2):443-54. PubMed ID: 16530221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Disulfide Oxidoreductase (CHU_1165) Is Essential for Cellulose Degradation by Affecting Outer Membrane Proteins in Cytophaga hutchinsonii.
    Zhao D; Wang Y; Wang S; Zhang W; Qi Q; Lu X
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033954
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.
    Luong TT; Tirgar R; Reardon-Robinson ME; Joachimiak A; Osipiuk J; Ton-That H
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29440253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and functional characterization of a periplasmic disulfide oxidoreductase from Neisseria meningitidis essential for meningococcal viability.
    Gand A; Selme-Roussel L; Collin S; Branlant G; Jacob C; Boschi-Muller S
    Biochem J; 2015 Jun; 468(2):271-82. PubMed ID: 25826614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1.
    Sevier CS; Kaiser CA
    Mol Biol Cell; 2006 May; 17(5):2256-66. PubMed ID: 16495342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.
    Li Calzi M; Poole LB
    Biochemistry; 1997 Oct; 36(43):13357-64. PubMed ID: 9341228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into disulfide bond catalysis in Chlamydia from the structure and function of DsbH, a novel oxidoreductase.
    Mac TT; von Hacht A; Hung KC; Dutton RJ; Boyd D; Bardwell JC; Ulmer TS
    J Biol Chem; 2008 Jan; 283(2):824-32. PubMed ID: 18003611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.