These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 26395806)

  • 1. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.
    Usman M
    Nanoscale; 2015 Oct; 7(39):16516-29. PubMed ID: 26395806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields.
    Ma X; Bryant GW; Doty MF
    Phys Rev B; 2016; 93(24):. PubMed ID: 32118123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic tight binding study of quantum confined Stark effect in GaBi
    Usman M
    J Phys Condens Matter; 2019 Oct; 31(41):415503. PubMed ID: 31288219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.
    Usman M; Tan YH; Ryu H; Ahmed SS; Krenner HJ; Boykin TB; Klimeck G
    Nanotechnology; 2011 Aug; 22(31):315709. PubMed ID: 21737873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic switching of hole character and single photon polarization using the quantum confined Stark effect in quantum dot-in-dot structures.
    Troncale V; Karlsson KF; Kapon E
    Nanotechnology; 2010 Jul; 21(28):285202. PubMed ID: 20562488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of stacking order, layer number and external electric field on electronic structures of few-layer C2N-h2D.
    Zhang R; Li B; Yang J
    Nanoscale; 2015 Sep; 7(33):14062-70. PubMed ID: 26239535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz-Driven Stark Spectroscopy of CdSe and CdSe-CdS Core-Shell Quantum Dots.
    Pein BC; Lee CK; Shi L; Shi J; Chang W; Hwang HY; Scherer J; Coropceanu I; Zhao X; Zhang X; Bulović V; Bawendi MG; Willard AP; Nelson KA
    Nano Lett; 2019 Nov; 19(11):8125-8131. PubMed ID: 31635457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport in strongly coupled quantum dot solids.
    Kagan CR; Murray CB
    Nat Nanotechnol; 2015 Dec; 10(12):1013-26. PubMed ID: 26551016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells.
    Liu X; Sun Y; Hsu BB; Lorbach A; Qi L; Heeger AJ; Bazan GC
    J Am Chem Soc; 2014 Apr; 136(15):5697-708. PubMed ID: 24655075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically active quantum-dot molecules.
    Shlykov AI; Baimuratov AS; Baranov AV; Fedorov AV; Rukhlenko ID
    Opt Express; 2017 Feb; 25(4):3811-3825. PubMed ID: 28241593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.
    Kada T; Asahi S; Kaizu T; Harada Y; Tamaki R; Okada Y; Kita T
    Sci Rep; 2017 Jul; 7(1):5865. PubMed ID: 28724895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superatomic molecules with internal electric fields for light harvesting.
    Reber AC; Chauhan V; Bista D; Khanna SN
    Nanoscale; 2020 Feb; 12(7):4736-4742. PubMed ID: 32049078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field.
    Lee Y; Hwang Y; Cho SB; Chung YC
    Phys Chem Chem Phys; 2014 Dec; 16(47):26273-8. PubMed ID: 25363478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.