These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26395906)

  • 1. Serial association analyses of recurrent gap time data via Kendall's tau.
    Fu TC; Su DH; Chang SH
    Biostatistics; 2016 Jan; 17(1):188-202. PubMed ID: 26395906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse probability of censoring weighted estimates of Kendall's τ for gap time analyses.
    Lakhal-Chaieb L; Cook RJ; Lin X
    Biometrics; 2010 Dec; 66(4):1145-52. PubMed ID: 20337629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonparametric analysis of bivariate gap time with competing risks.
    Huang CY; Wang C; Wang MC
    Biometrics; 2016 Sep; 72(3):780-90. PubMed ID: 26990686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-parametric estimation and model checking procedures for marginal gap time distributions for recurrent events.
    Kvist K; Gerster M; Andersen PK; Kessing LV
    Stat Med; 2007 Dec; 26(30):5394-410. PubMed ID: 17994608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliminating bias due to censoring in Kendall's tau estimators for quasi-independence of truncation and failure.
    Austin MD; Betensky RA
    Comput Stat Data Anal; 2014 May; 73():16-26. PubMed ID: 24505164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric regression analysis on longitudinal pattern of recurrent gap times.
    Chen YQ; Wang MC; Huang Y
    Biostatistics; 2004 Apr; 5(2):277-90. PubMed ID: 15054031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Inference for Kendall's τ within a Longitudinal Data Setting.
    Ma Y
    J Appl Stat; 2012 Dec; 39(1):2441-2452. PubMed ID: 23554542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas.
    Barthel N; Geerdens C; Czado C; Janssen P
    Biometrics; 2019 Jun; 75(2):439-451. PubMed ID: 30549012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing.
    Zhu H; Wang MC
    Biometrika; 2014 Sep; 101(3):519-533. PubMed ID: 32390662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the association between variables with lower detection limits.
    Romdhani H; Lakhal-Chaieb L
    Stat Med; 2011 Nov; 30(26):3137-48. PubMed ID: 21898520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant.
    Lee CH; Luo X; Huang CY; DeFor TE; Brunstein CG; Weisdorf DJ
    Biometrics; 2016 Jun; 72(2):535-45. PubMed ID: 26575402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the association between progression-free survival and overall survival in oncology trials using Kendall's τ.
    Weber EM; Titman AC
    Stat Med; 2019 Feb; 38(5):703-719. PubMed ID: 30311243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional independence test by generalized Kendall's tau with generalized odds ratio.
    Ji S; Ning J; Qin J; Follmann D
    Stat Methods Med Res; 2018 Nov; 27(11):3224-3235. PubMed ID: 29298614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-sample comparison for multiple ordered event data.
    Chang SH
    Biometrics; 2000 Mar; 56(1):183-9. PubMed ID: 10783794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of multivariate recurrent event data with time-dependent covariates and informative censoring.
    Zhao X; Liu L; Liu Y; Xu W
    Biom J; 2012 Sep; 54(5):585-99. PubMed ID: 22886587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing independence of bivariate interval-censored data using modified Kendall's tau statistic.
    Kim Y; Lim J; Park D
    Biom J; 2015 Nov; 57(6):1131-45. PubMed ID: 26372502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Gene-Environment Interactions by Non-Parametric Kendall's Partial Correlation with Application to TCGA Ultrahigh-Dimensional Survival Genomic Data.
    Wang JH; Yang CT
    Front Biosci (Landmark Ed); 2022 Jul; 27(8):225. PubMed ID: 36042165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonparametric estimation of sojourn time distributions for truncated serial event data--a weight-adjusted approach.
    Chang SH; Tzeng SJ
    Lifetime Data Anal; 2006 Mar; 12(1):53-67. PubMed ID: 16583299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method.
    Luo X; Huang CY
    Stat Med; 2011 Feb; 30(4):301-11. PubMed ID: 20963733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction screening by Kendall's partial correlation for ultrahigh-dimensional data with survival trait.
    Wang JH; Chen YH
    Bioinformatics; 2020 May; 36(9):2763-2769. PubMed ID: 31926011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.