These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26395926)
1. A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties. Guo Y; Wang Q; Kawazoe Y; Jena P Sci Rep; 2015 Sep; 5():14342. PubMed ID: 26395926 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility. Zhuo Z; Wu X; Yang J Nanoscale; 2018 Jan; 10(3):1265-1271. PubMed ID: 29292469 [TBL] [Abstract][Full Text] [Related]
3. A Novel Silicon Allotrope in the Monoclinic Phase. Bai C; Chai C; Fan Q; Liu Y; Yang Y Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772800 [TBL] [Abstract][Full Text] [Related]
4. Two novel silicon phases with direct band gaps. Fan Q; Chai C; Wei Q; Yang Y Phys Chem Chem Phys; 2016 May; 18(18):12905-13. PubMed ID: 27104737 [TBL] [Abstract][Full Text] [Related]
5. A new direct band gap Si-Ge allotrope with advanced electronic and optical properties. Shen H; Yang R; Zhou J; Yu Z; Lu M; Zheng Y; Zhang R; Chen L; Su WS; Wang S Phys Chem Chem Phys; 2022 Jul; 24(26):16310-16316. PubMed ID: 35758594 [TBL] [Abstract][Full Text] [Related]
6. Towards direct-gap silicon phases by the inverse band structure design approach. Xiang HJ; Huang B; Kan E; Wei SH; Gong XG Phys Rev Lett; 2013 Mar; 110(11):118702. PubMed ID: 25166584 [TBL] [Abstract][Full Text] [Related]
7. Dipole-allowed direct band gap silicon superlattices. Oh YJ; Lee IH; Kim S; Lee J; Chang KJ Sci Rep; 2015 Dec; 5():18086. PubMed ID: 26656482 [TBL] [Abstract][Full Text] [Related]
8. Electronic and optical properties of silicon based porous sheets. Guo Y; Zhang S; Wang Q Phys Chem Chem Phys; 2014 Aug; 16(31):16832-6. PubMed ID: 25005914 [TBL] [Abstract][Full Text] [Related]
10. A Honeycomb BeN2 Sheet with a Desirable Direct Band Gap and High Carrier Mobility. Zhang C; Sun Q J Phys Chem Lett; 2016 Jul; 7(14):2664-70. PubMed ID: 27338078 [TBL] [Abstract][Full Text] [Related]
11. Predicted CsSi compound: a promising material for photovoltaic applications. Du Y; Li W; Zurek E; Gao L; Cui X; Zhang M; Liu H; Tian Y; Zhang S; Zhang D Phys Chem Chem Phys; 2020 May; 22(20):11578-11582. PubMed ID: 32400781 [TBL] [Abstract][Full Text] [Related]
12. Six new silicon phases with direct band gaps. Wei Q; Tong W; Wei B; Zhang M; Peng X Phys Chem Chem Phys; 2019 Sep; 21(36):19963-19968. PubMed ID: 31478037 [TBL] [Abstract][Full Text] [Related]
13. A CO monolayer: first-principles design of a new direct band-gap semiconductor with excellent mechanical properties. Teng ZW; Liu CS; Yan XH Nanoscale; 2017 May; 9(17):5445-5450. PubMed ID: 28177026 [TBL] [Abstract][Full Text] [Related]
14. InP nanocrystals on silicon for optoelectronic applications. Prucnal S; Zhou S; Ou X; Reuther H; Liedke MO; Mücklich A; Helm M; Zuk J; Turek M; Pyszniak K; Skorupa W Nanotechnology; 2012 Dec; 23(48):485204. PubMed ID: 23138269 [TBL] [Abstract][Full Text] [Related]
15. Direct band gap silicon allotropes. Wang Q; Xu B; Sun J; Liu H; Zhao Z; Yu D; Fan C; He J J Am Chem Soc; 2014 Jul; 136(28):9826-9. PubMed ID: 24971657 [TBL] [Abstract][Full Text] [Related]
16. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. Chung I; Song JH; Im J; Androulakis J; Malliakas CD; Li H; Freeman AJ; Kenney JT; Kanatzidis MG J Am Chem Soc; 2012 May; 134(20):8579-87. PubMed ID: 22578072 [TBL] [Abstract][Full Text] [Related]
17. fvs-Si48: a direct bandgap silicon allotrope. Hu M; Wang Z; Xu Y; Liang J; Li J; Zhu X Phys Chem Chem Phys; 2018 Nov; 20(41):26091-26097. PubMed ID: 30063066 [TBL] [Abstract][Full Text] [Related]
18. B Zhang Y; Wu Y; Jin C; Ren F; Wang B Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34384072 [TBL] [Abstract][Full Text] [Related]
19. Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Guo Y; Wu Q; Li Y; Lu N; Mao K; Bai Y; Zhao J; Wang J; Zeng XC Nanoscale Horiz; 2019 Jan; 4(1):223-230. PubMed ID: 32254160 [TBL] [Abstract][Full Text] [Related]
20. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]