BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26395968)

  • 1. Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines.
    Zhou P; Jia S; Pan D; Wang L; Gao J; Lu J; Shi J; Tang Z; Liu H
    Sci Rep; 2015 Sep; 5():14402. PubMed ID: 26395968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the pH-responsive catalytic behavior of AuNPs by DNA.
    Zhan P; Wang J; Wang ZG; Ding B
    Small; 2014 Jan; 10(2):399-406. PubMed ID: 24039035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles.
    Luo W; Zhu C; Su S; Li D; He Y; Huang Q; Fan C
    ACS Nano; 2010 Dec; 4(12):7451-8. PubMed ID: 21128689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-catalytic growth of unmodified gold nanoparticles as conductive bridges mediated gap-electrical signal transduction for DNA hybridization detection.
    Zhang J; Nie H; Wu Z; Yang Z; Zhang L; Xu X; Huang S
    Anal Chem; 2014 Jan; 86(2):1178-85. PubMed ID: 24313362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles.
    Yao D; Li H; Guo Y; Zhou X; Xiao S; Liang H
    Chem Commun (Camb); 2016 Jun; 52(48):7556-9. PubMed ID: 27225943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases.
    Zhou X; Guo S; Gao J; Zhao J; Xue S; Xu W
    Biosens Bioelectron; 2017 Dec; 98():83-90. PubMed ID: 28654887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.
    Lin Y; Li Z; Chen Z; Ren J; Qu X
    Biomaterials; 2013 Apr; 34(11):2600-10. PubMed ID: 23352119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unfolding of G-quadruplexes and its adverse effect on DNA-gold nanoparticles-based sensing system.
    Cheng S; Zheng B; Wang M; Ge X; Zhao Q; Liu W; Lam MH
    Biosens Bioelectron; 2014 Mar; 53():479-85. PubMed ID: 24211461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ nanoplasmonic probing of enzymatic activity of monolayer-confined glucose oxidase on colloidal nanoparticles.
    He H; Xu X; Wu H; Zhai Y; Jin Y
    Anal Chem; 2013 May; 85(9):4546-53. PubMed ID: 23531235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable loading of oligonucleotides with secondary structure on gold nanoparticles through a pH-driven method.
    Dam DH; Lee H; Lee RC; Kim KH; Kelleher NL; Odom TW
    Bioconjug Chem; 2015 Feb; 26(2):279-85. PubMed ID: 25564799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plasmonic blood glucose monitor based on enzymatic etching of gold nanorods.
    Liu X; Zhang S; Tan P; Zhou J; Huang Y; Nie Z; Yao S
    Chem Commun (Camb); 2013 Mar; 49(18):1856-8. PubMed ID: 23361524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy.
    Kang T; Hong S; Choi I; Sung JJ; Kim Y; Hahn JS; Yi J
    J Am Chem Soc; 2006 Oct; 128(39):12870-8. PubMed ID: 17002381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Functional Stability of Functional Nucleic Acid-Gold Nanoparticle Conjugates with Different Secondary Structures.
    Wang L; Wan Y; Xu Q; Lou X
    Langmuir; 2019 Sep; 35(36):11791-11798. PubMed ID: 31430429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying G-quadruplex-binding ligands using DNA-functionalized gold nanoparticles.
    Qiao Y; Deng J; Jin Y; Chen G; Wang L
    Analyst; 2012 Apr; 137(7):1663-8. PubMed ID: 22331167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel "on-off-on" switch system.
    Zhao M; Zhuo Y; Chai YQ; Yuan R
    Biomaterials; 2015 Jun; 52():476-83. PubMed ID: 25818453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new strategy for the controlled deposition of gold nanoparticle aggregates on two-dimensional polystyrene arrays and its application in glucose oxidase immobilization.
    Xia Y; Li J; Jiang L
    J Colloid Interface Sci; 2012 Jul; 377(1):34-9. PubMed ID: 22498366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA nanomachine induced by single-walled carbon nanotubes on gold surface.
    Zhao C; Song Y; Ren J; Qu X
    Biomaterials; 2009 Mar; 30(9):1739-45. PubMed ID: 19124154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles.
    Xiong Y; Zhang Y; Rong P; Yang J; Wang W; Liu D
    Nanoscale; 2015 Oct; 7(38):15584-8. PubMed ID: 26360908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection.
    Silvestrini M; Ugo P
    Anal Bioanal Chem; 2013 Jan; 405(2-3):995-1005. PubMed ID: 22955672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.