These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26396255)

  • 1. Control over overall shape and size in de novo designed proteins.
    Lin YR; Koga N; Tatsumi-Koga R; Liu G; Clouser AF; Montelione GT; Baker D
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5478-85. PubMed ID: 26396255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of backbone strain in de novo design of complex α/β protein structures.
    Koga N; Koga R; Liu G; Castellanos J; Montelione GT; Baker D
    Nat Commun; 2021 Jun; 12(1):3921. PubMed ID: 34168113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles for designing ideal protein structures.
    Koga N; Tatsumi-Koga R; Liu G; Xiao R; Acton TB; Montelione GT; Baker D
    Nature; 2012 Nov; 491(7423):222-7. PubMed ID: 23135467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures.
    Dang B; Wu H; Mulligan VK; Mravic M; Wu Y; Lemmin T; Ford A; Silva DA; Baker D; DeGrado WF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10852-10857. PubMed ID: 28973862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo design of a non-local β-sheet protein with high stability and accuracy.
    Marcos E; Chidyausiku TM; McShan AC; Evangelidis T; Nerli S; Carter L; Nivón LG; Davis A; Oberdorfer G; Tripsianes K; Sgourakis NG; Baker D
    Nat Struct Mol Biol; 2018 Nov; 25(11):1028-1034. PubMed ID: 30374087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a de novo helical protein by 2D-NMR spectroscopy.
    Kuroda Y; Nakai T; Ohkubo T
    J Mol Biol; 1994 Feb; 236(3):862-8. PubMed ID: 8114099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo protein design: fully automated sequence selection.
    Dahiyat BI; Mayo SL
    Science; 1997 Oct; 278(5335):82-7. PubMed ID: 9311930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and structural analysis of two designed proteins with 88% identity adopting different folds.
    Saravanan KM; Balasubramanian H; Nallusamy S; Samuel S
    Protein Eng Des Sel; 2010 Dec; 23(12):911-8. PubMed ID: 20952437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the space of protein geometries by computational design of de novo fold families.
    Pan X; Thompson MC; Zhang Y; Liu L; Fraser JS; Kelly MJS; Kortemme T
    Science; 2020 Aug; 369(6507):1132-1136. PubMed ID: 32855341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of a de novo protein from a designed combinatorial library.
    Wei Y; Kim S; Fela D; Baum J; Hecht MH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13270-3. PubMed ID: 14593201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T; Argos P
    J Mol Biol; 1996 Mar; 256(3):645-60. PubMed ID: 8604145
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise assembly of complex beta sheet topologies from de novo designed building blocks.
    King IC; Gleixner J; Doyle L; Kuzin A; Hunt JF; Xiao R; Montelione GT; Stoddard BL; DiMaio F; Baker D
    Elife; 2015 Dec; 4():. PubMed ID: 26650357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification.
    Jin W; Kambara O; Sasakawa H; Tamura A; Takada S
    Structure; 2003 May; 11(5):581-90. PubMed ID: 12737823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of a polar core into the de novo designed protein Top7.
    Basanta B; Chan KK; Barth P; King T; Sosnick TR; Hinshaw JR; Liu G; Everett JK; Xiao R; Montelione GT; Baker D
    Protein Sci; 2016 Jul; 25(7):1299-307. PubMed ID: 26873166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein design: a hierarchic approach.
    Bryson JW; Betz SF; Lu HS; Suich DJ; Zhou HX; O'Neil KT; DeGrado WF
    Science; 1995 Nov; 270(5238):935-41. PubMed ID: 7481798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.