These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26396389)

  • 1. Development of expert system for biobased polymer material selection: food packaging application.
    Sanyang ML; Sapuan SM
    J Food Sci Technol; 2015 Oct; 52(10):6445-54. PubMed ID: 26396389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Polylactic Acid Initiated through Biobased Antioxidants: Towards Intrinsically Active Food Packaging.
    Ortenzi MA; Gazzotti S; Marcos B; Antenucci S; Camazzola S; Piergiovanni L; Farina H; Di Silvestro G; Verotta L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32455761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review.
    Alhanish A; Abu Ghalia M
    Biotechnol Prog; 2021 Nov; 37(6):e3210. PubMed ID: 34499430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions.
    Jha S; Akula B; Enyioma H; Novak M; Amin V; Liang H
    Polymers (Basel); 2024 Aug; 16(16):. PubMed ID: 39204482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and applications of biobased packaging materials for the food industry.
    Weber CJ; Haugaard V; Festersen R; Bertelsen G
    Food Addit Contam; 2002; 19 Suppl():172-7. PubMed ID: 11962705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer.
    Beltrán FR; Barrio I; Lorenzo V; Del Río B; Martínez Urreaga J; de la Orden MU
    Waste Manag Res; 2019 Feb; 37(2):135-141. PubMed ID: 30204060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.
    Arrieta MP; Castro-López Mdel M; Rayón E; Barral-Losada LF; López-Vilariño JM; López J; González-Rodríguez MV
    J Agric Food Chem; 2014 Oct; 62(41):10170-80. PubMed ID: 25255375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated multi-criteria decision-making framework for the selection of sustainable biodegradable polymer for food packaging applications.
    Mahajan A; Singh I; Arora N
    Environ Dev Sustain; 2023 Mar; ():1-22. PubMed ID: 37362995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications.
    Nazrin A; Sapuan SM; Zuhri MYM; Ilyas RA; Syafiq R; Sherwani SFK
    Front Chem; 2020; 8():213. PubMed ID: 32351928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed.
    Nakajima H; Dijkstra P; Loos K
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study.
    Panseri S; Martino PA; Cagnardi P; Celano G; Tedesco D; Castrica M; Balzaretti C; Chiesa LM
    Food Chem; 2018 May; 249():22-29. PubMed ID: 29407927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review.
    Gigante V; Aliotta L; Ascrizzi R; Pistelli L; Zinnai A; Batoni G; Coltelli MB; Lazzeri A
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of poly(lactic acid)-based materials for antimicrobial packaging.
    Tawakkal IS; Cran MJ; Miltz J; Bigger SW
    J Food Sci; 2014 Aug; 79(8):R1477-90. PubMed ID: 25039867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomacromolecules, Biobased and Biodegradable Polymers (2017-2019).
    Teramoto N
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update.
    Zhao X; Cornish K; Vodovotz Y
    Environ Sci Technol; 2020 Apr; 54(8):4712-4732. PubMed ID: 32202110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials.
    Gabrić D; Kurek M; Ščetar M; Brnčić M; Galić K
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging.
    Jin T; Zhang H
    J Food Sci; 2008 Apr; 73(3):M127-34. PubMed ID: 18387115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polylactic acid/zinc oxide biocomposite films for food packaging application.
    Marra A; Silvestre C; Duraccio D; Cimmino S
    Int J Biol Macromol; 2016 Jul; 88():254-62. PubMed ID: 27012896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use and application of gelatin as potential biodegradable packaging materials for food products.
    Nur Hanani ZA; Roos YH; Kerry JP
    Int J Biol Macromol; 2014 Nov; 71():94-102. PubMed ID: 24769086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.