These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Huang HL; Chao W; Lin JJ Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390 [TBL] [Abstract][Full Text] [Related]
5. Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans-2-Butene and 2,3-Dimethyl-2-butene Ozonolysis. Kuwata KT; Luu L; Weberg AB; Huang K; Parsons AJ; Peebles LA; Rackstraw NB; Kim MJ J Phys Chem A; 2018 Mar; 122(9):2485-2502. PubMed ID: 29431443 [TBL] [Abstract][Full Text] [Related]
6. A computational study of the oxidation of SO2 to SO3 by gas-phase organic oxidants. Kurtén T; Lane JR; Jørgensen S; Kjaergaard HG J Phys Chem A; 2011 Aug; 115(31):8669-81. PubMed ID: 21702472 [TBL] [Abstract][Full Text] [Related]
7. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation. Ess DH; Hayden AE; Klärner FG; Houk KN J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823 [TBL] [Abstract][Full Text] [Related]
8. Multiphase Mechanism for the Production of Sulfuric Acid from SO Heine N; Arata C; Goldstein AH; Houle FA; Wilson KR J Phys Chem Lett; 2018 Jun; 9(12):3504-3510. PubMed ID: 29883127 [TBL] [Abstract][Full Text] [Related]
9. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996 [TBL] [Abstract][Full Text] [Related]
10. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of Du B; Zhang W Molecules; 2020 Jul; 25(13):. PubMed ID: 32635243 [TBL] [Abstract][Full Text] [Related]
11. SO de Souza Bonfim V; Barbosa de Castilho R; Baptista L; Pilling S Phys Chem Chem Phys; 2017 Oct; 19(39):26906-26917. PubMed ID: 28953271 [TBL] [Abstract][Full Text] [Related]
12. Quantum chemical and master equation studies of the methyl vinyl carbonyl oxides formed in isoprene ozonolysis. Kuwata KT; Valin LC; Converse AD J Phys Chem A; 2005 Dec; 109(47):10710-25. PubMed ID: 16863120 [TBL] [Abstract][Full Text] [Related]
13. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH Raghunath P; Lee YP; Lin MC J Phys Chem A; 2017 May; 121(20):3871-3878. PubMed ID: 28453276 [TBL] [Abstract][Full Text] [Related]
14. Kinetic studies of C Howes NUM; Mir ZS; Blitz MA; Hardman S; Lewis TR; Stone D; Seakins PW Phys Chem Chem Phys; 2018 Aug; 20(34):22218-22227. PubMed ID: 30118123 [TBL] [Abstract][Full Text] [Related]
15. Nascent energy distribution of the Criegee intermediate CH Pfeifle M; Ma YT; Jasper AW; Harding LB; Hase WL; Klippenstein SJ J Chem Phys; 2018 May; 148(17):174306. PubMed ID: 29739207 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study of the gas-phase ozonolysis of beta-pinene (C10H16). Nguyen TL; Peeters J; Vereecken L Phys Chem Chem Phys; 2009 Jul; 11(27):5643-56. PubMed ID: 19842482 [TBL] [Abstract][Full Text] [Related]
17. Criegee intermediate reaction with CO: mechanism, barriers, conformer-dependence, and implications for ozonolysis chemistry. Kumar M; Busch DH; Subramaniam B; Thompson WH J Phys Chem A; 2014 Mar; 118(10):1887-94. PubMed ID: 24527836 [TBL] [Abstract][Full Text] [Related]
18. Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO Zou M; Liu T; Vansco MF; Sojdak CA; Markus CR; Almeida R; Au K; Sheps L; Osborn DL; Winiberg FAF; Percival CJ; Taatjes CA; Klippenstein SJ; Lester MI; Caravan RL J Phys Chem A; 2023 Nov; 127(43):8994-9002. PubMed ID: 37870411 [TBL] [Abstract][Full Text] [Related]
19. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study. Jiang L; Xu YS; Ding AZ J Phys Chem A; 2010 Dec; 114(47):12452-61. PubMed ID: 21053959 [TBL] [Abstract][Full Text] [Related]
20. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one). Silva Gd; Bozzelli JW J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]