These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26397198)

  • 1. The influence of gait stance on pedestrian lower limb injury risk.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2015 Dec; 85():83-92. PubMed ID: 26397198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of lower extremity postures on kinematics and injuries of cyclists in vehicle side collisions.
    Mizuno K; Yamada H; Mizuguchi H; Ito D; Han Y; Hitosugi M
    Traffic Inj Prev; 2016 Aug; 17(6):618-24. PubMed ID: 26760737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y; Yang J; Mizuno K; Matsui Y
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts.
    Nie B; Zhou Q
    Traffic Inj Prev; 2016 Oct; 17(7):712-9. PubMed ID: 26890318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions?
    Ma H; Mao Z; Li G; Yan L; Mo F
    Acta Bioeng Biomech; 2020; 22(3):117-129. PubMed ID: 33518731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obesity effects on pedestrian lower extremity injuries in vehicle-to-pedestrian impacts: A numerical investigation using human body models.
    Tang J; Zhou Q; Nie B; Hu J
    Traffic Inj Prev; 2020; 21(8):569-574. PubMed ID: 33095068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Have pedestrian subsystem tests improved passenger car front shape?
    Li G; Wang F; Otte D; Cai Z; Simms C
    Accid Anal Prev; 2018 Jun; 115():143-150. PubMed ID: 29571012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.
    Li G; Lyons M; Wang B; Yang J; Otte D; Simms C
    Accid Anal Prev; 2017 Apr; 101():11-21. PubMed ID: 28167420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.
    Li G; Yang J; Simms C
    Traffic Inj Prev; 2016 Jul; 17(5):515-23. PubMed ID: 26786188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of strain and loads measured in the long bones with observed kinematics of the lower limb during vehicle-pedestrian impacts.
    Untaroiu C; Kerrigan J; Kam C; Crandall J; Yamazaki K; Fukuyama K; Kamiji K; Yasuki T; Funk J
    Stapp Car Crash J; 2007 Oct; 51():433-66. PubMed ID: 18278607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents.
    Matsui Y
    Accid Anal Prev; 2005 Jul; 37(4):633-40. PubMed ID: 15949454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model.
    Scattina A; Mo F; Masson C; Avalle M; Arnoux PJ
    Traffic Inj Prev; 2018 Jul; 19(5):535-541. PubMed ID: 29381438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of vehicle front-end design on pedestrian ground impact.
    Crocetta G; Piantini S; Pierini M; Simms C
    Accid Anal Prev; 2015 Jun; 79():56-69. PubMed ID: 25813760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.
    Petit P; Trosseille X; Dufaure N; Dubois D; Potier P; Vallancien G
    Stapp Car Crash J; 2014 Nov; 58():197-211. PubMed ID: 26192955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pedestrian head translation, rotation and impact velocity: the influence of vehicle speed, pedestrian speed and pedestrian gait.
    Elliott JR; Simms CK; Wood DP
    Accid Anal Prev; 2012 Mar; 45():342-53. PubMed ID: 22269518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of pedestrian-to-ground impact injury risk in vehicle-to-pedestrian collisions based on rotation angles.
    Shi L; Han Y; Huang H; Li Q; Wang B; Mizuno K
    J Safety Res; 2018 Feb; 64():37-47. PubMed ID: 29636168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of biofidelity of THUMS pedestrian model under a whole-body impact conditions with a generic sedan buck.
    Wu T; Kim T; Bollapragada V; Poulard D; Chen H; Panzer MB; Forman JL; Crandall JR; Pipkorn B
    Traffic Inj Prev; 2017 May; 18(sup1):S148-S154. PubMed ID: 28548920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of car impact to pedestrian lower extremity: influence of different car-front shapes and dummy parameters on test results.
    Ishikawa H; Kajzer J; Ono K; Sakurai M
    Accid Anal Prev; 1994 Apr; 26(2):231-42. PubMed ID: 8198692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.
    Yin S; Li J; Xu J
    Accid Anal Prev; 2017 Sep; 106():285-296. PubMed ID: 28654844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.