These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26397473)

  • 1. Sorption and desorption kinetics and isotherms of volatile methylsiloxanes with atmospheric aerosols.
    Kim J; Xu S
    Chemosphere; 2016 Feb; 144():555-63. PubMed ID: 26397473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of soil-water sorption coefficients of volatile methylsiloxanes.
    Kozerski GE; Xu S; Miller J; Durham J
    Environ Toxicol Chem; 2014 Sep; 33(9):1937-45. PubMed ID: 24862578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring snow scavenging of two airborne cyclic volatile methylsiloxanes under controlled conditions.
    Xu S; Vogel A
    Chemosphere; 2021 Dec; 285():131291. PubMed ID: 34252803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models for the sorption of volatile organic compounds by diesel soot and atmospheric aerosols.
    Atapattu SN; Poole CF
    J Environ Monit; 2009 Apr; 11(4):815-22. PubMed ID: 19557236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ozone and relative humidity on the heterogeneous uptake of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane on model mineral dust aerosol components.
    Navea JG; Xu S; Stanier CO; Young MA; Grassian VH
    J Phys Chem A; 2009 Jun; 113(25):7030-8. PubMed ID: 19485395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of cyclic volatile methylsiloxanes in the aquatic environment using low-density polyethylene passive sampling devices using an in-field calibration study--challenges and guidance.
    Bruemmer J; Falcon R; Greenwood R; Mills GA; Hastie C; Sparham C; van Egmond R
    Chemosphere; 2015 Mar; 122():38-44. PubMed ID: 25434262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements.
    Xu S; Warner N; Bohlin-Nizzetto P; Durham J; McNett D
    Chemosphere; 2019 Aug; 228():460-468. PubMed ID: 31051348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration and application of a passive air sampler (XAD-PAS) for volatile methyl siloxanes.
    Krogseth IS; Zhang X; Lei YD; Wania F; Breivik K
    Environ Sci Technol; 2013 May; 47(9):4463-70. PubMed ID: 23527480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-reactivity relationships of hydroxyl radical rate constants for linear and cyclic volatile methylsiloxanes.
    Kim J; Xu S
    Environ Toxicol Chem; 2017 Dec; 36(12):3240-3245. PubMed ID: 28719005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air.
    Krogseth IS; Kierkegaard A; McLachlan MS; Breivik K; Hansen KM; Schlabach M
    Environ Sci Technol; 2013 Jan; 47(1):502-9. PubMed ID: 23194257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siloxane treatment by adsorption into porous materials.
    Ricaurte Ortega D; Subrenat A
    Environ Technol; 2009 Sep; 30(10):1073-83. PubMed ID: 19886432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of Volatile Methyl Siloxanes in New York City Reflect Emissions from Personal Care and Industrial Use.
    Brunet CE; Marek RF; Stanier CO; Hornbuckle KC
    Environ Sci Technol; 2024 May; 58(20):8835-8845. PubMed ID: 38722766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of a diverse set of organic vapors to diesel soot and road tunnel aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6632-7. PubMed ID: 16190221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch equilibrium experiments and modeling reveal weak temperature dependence of cyclic volatile methylsiloxane sorption in soil/sediment organic carbon-water systems.
    Kozerski GE; Kim J; Durham JA; Townsend B
    Sci Total Environ; 2024 Sep; 942():173541. PubMed ID: 38802002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models.
    Panagopoulos D; MacLeod M
    Environ Sci Process Impacts; 2018 Jan; 20(1):183-194. PubMed ID: 29300410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven.
    Fromme H; Witte M; Fembacher L; Gruber L; Hagl T; Smolic S; Fiedler D; Sysoltseva M; Schober W
    Environ Int; 2019 May; 126():145-152. PubMed ID: 30798195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global distribution of linear and cyclic volatile methyl siloxanes in air.
    Genualdi S; Harner T; Cheng Y; Macleod M; Hansen KM; van Egmond R; Shoeib M; Lee SC
    Environ Sci Technol; 2011 Apr; 45(8):3349-54. PubMed ID: 21438524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada.
    Wang DG; de Solla SR; Lebeuf M; Bisbicos T; Barrett GC; Alaee M
    Sci Total Environ; 2017 Jan; 574():1254-1260. PubMed ID: 27663360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Junge relationships in measurement data for cyclic siloxanes in air.
    MacLeod M; Kierkegaard A; Genualdi S; Harner T; Scheringer M
    Chemosphere; 2013 Oct; 93(5):830-4. PubMed ID: 23177712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Characterization of Secondary Aerosol from Oxidation of Cyclic Methylsiloxanes.
    Wu Y; Johnston MV
    J Am Soc Mass Spectrom; 2016 Mar; 27(3):402-9. PubMed ID: 26729452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.