These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26397917)

  • 21. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop.
    Daub CD; Wang J; Kudesia S; Bratko D; Luzar A
    Faraday Discuss; 2010; 146():67-77; discussion 79-101, 395-401. PubMed ID: 21043415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces.
    Wang H; Liu C; Zhan H; Liu Y
    ACS Omega; 2019 Jul; 4(7):12238-12243. PubMed ID: 31460339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces.
    Su J; Legchenkova I; Liu C; Lu C; Ma G; Bormashenko E; Liu Y
    Langmuir; 2020 Jan; 36(2):534-539. PubMed ID: 31880946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture.
    Vaikuntanathan V; Sivakumar D
    Langmuir; 2016 Mar; 32(10):2399-409. PubMed ID: 26885767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature.
    Maitra T; Tiwari MK; Antonini C; Schoch P; Jung S; Eberle P; Poulikakos D
    Nano Lett; 2014 Jan; 14(1):172-82. PubMed ID: 24320719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of droplets onto inclined surfaces.
    Sikalo S; Tropea C; Ganić EN
    J Colloid Interface Sci; 2005 Jun; 286(2):661-9. PubMed ID: 15897085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water Penetration through a Superhydrophobic Mesh During a Drop Impact.
    Ryu S; Sen P; Nam Y; Lee C
    Phys Rev Lett; 2017 Jan; 118(1):014501. PubMed ID: 28106449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet Impact Dynamics on Biomimetic Replica of Yellow Rose Petals: Rebound to Micropinning Transition.
    Bandyopadhyay S; Shristi A; Kumawat V; Gope A; Mukhopadhyay A; Chakraborty S; Mukherjee R
    Langmuir; 2023 May; 39(17):6051-6060. PubMed ID: 37067511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.