These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26397922)

  • 21. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability.
    Shao F; Bian SW; Zhu Q; Guo MX; Liu S; Peng YH
    Chem Asian J; 2016 Jul; 11(13):1906-12. PubMed ID: 27156174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application.
    Huang H; Xu L; Tang Y; Tang S; Du Y
    Nanoscale; 2014 Feb; 6(4):2426-33. PubMed ID: 24441914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cabbage leaf like nanostructure of a NiS@ZnS composite on Ni foam with excellent electrochemical performance for supercapacitors.
    Ikkurthi KD; Srinivasa Rao S; Ahn JW; Sunesh CD; Kim HJ
    Dalton Trans; 2019 Jan; 48(2):578-586. PubMed ID: 30534780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of a highly efficient 3D graphene-CNT-MnO
    Asif M; Tan Y; Pan L; Rashad M; Li J; Fu X; Cui R
    Phys Chem Chem Phys; 2016 Sep; 18(38):26854-26864. PubMed ID: 27711692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D architecture of a graphene/CoMoO(4) composite for asymmetric supercapacitors usable at various temperatures.
    Jiang Y; Zheng X; Yan X; Li Y; Zhao X; Zhang Y
    J Colloid Interface Sci; 2017 May; 493():42-50. PubMed ID: 28088120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.
    Xing LL; Huang KJ; Fang LX
    Dalton Trans; 2016 Nov; 45(43):17439-17446. PubMed ID: 27735015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.
    Lin TW; Dai CS; Hung KC
    Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchically porous nickel oxide nanosheets grown on nickel foam prepared by one-step in situ anodization for high-performance supercapacitors.
    Yang L; Qian L; Tian X; Li J; Dai J; Guo Y; Xiao D
    Chem Asian J; 2014 Jun; 9(6):1579-85. PubMed ID: 24771534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Hierarchically Mesoporous ZnCo
    Moon IK; Yoon S; Oh J
    Chemistry; 2017 Jan; 23(3):597-604. PubMed ID: 27805794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ni Foam-Ni
    Wang X; Hu J; Su Y; Hao J; Liu F; Han S; An J; Lian J
    Chemistry; 2017 Mar; 23(17):4128-4136. PubMed ID: 28133889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor.
    Ndiaye NM; Ngom BD; Sylla NF; Masikhwa TM; Madito MJ; Momodu D; Ntsoane T; Manyala N
    J Colloid Interface Sci; 2018 Dec; 532():395-406. PubMed ID: 30099303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistically Active NiCo
    Tiruneh SN; Kang BK; Kwag SH; Lee Y; Kim M; Yoon DH
    Chemistry; 2018 Mar; 24(13):3263-3270. PubMed ID: 29389044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.
    Ghosh D; Das CK
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications.
    Lu Y; Liu X; Qiu K; Cheng J; Wang W; Yan H; Tang C; Kim JK; Luo Y
    ACS Appl Mater Interfaces; 2015 May; 7(18):9682-90. PubMed ID: 25901466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nickel Hydroxide Supercapacitor with a Theoretical Capacitance and High Rate Capability Based on Hollow Dendritic 3D-Nickel Current Collectors.
    Kim SW; Kim IH; Kim SI; Jang JH
    Chem Asian J; 2017 Jun; 12(12):1291-1296. PubMed ID: 28467673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.
    Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide.
    Meher SK; Justin P; Rao GR
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2063-73. PubMed ID: 21568334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials.
    Chen S; Duan J; Tang Y; Zhang Qiao S
    Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.